TensorRT教程(1)初探TensorRT

2024-06-07 03:12
文章标签 教程 初探 tensorrt

本文主要是介绍TensorRT教程(1)初探TensorRT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. TensorRT简要介绍

        TensorRT(NVIDIA TensorRT)是 NVIDIA 开发的一个用于深度学习推理的高性能推理引擎。它可以针对 NVIDIA GPU 进行高效的深度学习推理加速,提供了许多优化技术,使得推理速度更快,并且可以在生产环境中部署。

        下面是 TensorRT 的一些主要特点和功能:

        高性能推理:TensorRT 使用了许多优化技术,包括网络剪枝、量化、层融合、内存优化等,以提高推理速度和效率。这使得 TensorRT 能够在现代 NVIDIA GPU 上实现高性能的深度学习推理。

        多平台支持:TensorRT 提供了多个版本,可以在各种 NVIDIA GPU 上运行,并且支持多种操作系统,包括 Linux 和 Windows。它还提供了 Python API 和 C++ API,以满足不同开发环境和需求。

        灵活的部署选项:TensorRT 提供了多种部署选项,可以满足不同的部署需求。它可以作为独立的推理引擎使用,也可以与其他深度学习框架集成,例如 TensorFlow、PyTorch 等。

      支持常见的深度学习模型:TensorRT 支持常见的深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。它还支持各种网络层,如卷积层、池化层、全连接层等。

        优化技术:TensorRT 提供了多种优化技术,包括网络剪枝、权重量化、层融合、内存优化等。这些优化技术可以显著提高推理速度,并降低内存消耗。

2. PyTorch到TensorRT

        PyTorch已经成为最流行的训练框架之一。

        那么如何将PyTorch训练所得到的权重文件部署到TensorRT中呢?

        一般情况下有两种方式可以实现。

        一种是通过将PyTorch训练的权重转换成为ONNX格式,然后通过TensorRT的OnnxParser推理,或者经过trtexec转换成为tensorrt的engine,然后跨平台推理。

        另一种方式是使用INetworkDefinition自行构建网络,生成tensorrt的engine,然后进行推理。

        前一种方式较为简洁,后一种方式较为复杂,需要对网络非常了解,对网络构建非常明晰。

        本序列课程将基于INetworkDefinition进行网络构建,讲解基于TensorRT的神经网络推理。

3. 初始构建

        首先需要明确一点,TensorRT是基于NCHW的Tensor模式。

        TensorRT的网络推理分为两个部分,首先是构建引擎,然后才可以使用引擎进行推理。

        当然也可以分成一部分,但是为了节省推理时间,我们通常会将构建的因为那个文件序列化,保存在本地,之后在每次推理的时候,反序列化、加载引擎,进行推理。

        初始构建的时候,需要先构建一个INetworkDefinition的对象,并且构建输入数据,参考如下。

INetworkDefinition *network = builder->createNetworkV2(1U);ITensor *data = network->addInput(mInputBlobName, dt, mInputDims);

其中,

mInputBlobName是一个字符串,标识输入Tensor节点的名字。

dt是一个DataType类型的变量,顾名思义,它用来标识输入Tensor的类型。

mInputDims是一个Dims类型的数据,用来表示输入Tensor的Dimension信息。

通过以上两行代码,我们看到了构建了一个空的网络。

4. 添加一个简单的卷积层

前面我们已经知道了如何构建一个空“网络”,那么我们接着添加一个卷积层,组成一个只有一层卷积的卷积神经网络。

    IConvolutionLayer *conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap[lname + ".conv.weight"], emptywts);assert(conv1);conv1->setName((lname+".conv").data());conv1->setStrideNd(DimsHW{s, s});conv1->setPaddingNd(DimsHW{p, p});conv1->setNbGroups(g);

以上演示了在“网络”中添加卷积层。但这样我们比较繁琐,我们最好能够将卷积层进行封装。

ILayer *convBlock(INetworkDefinition *network, std::map<std::string, Weights> &weightMap, ITensor &input, int outch, int ksize, int s, int g, std::string lname, bool act){Weights emptywts{DataType::kFLOAT, nullptr, 0};int p = ksize / 3;IConvolutionLayer *conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap[lname + ".conv.weight"], emptywts);assert(conv1);conv1->setName((lname+".conv").data());conv1->setStrideNd(DimsHW{s, s});conv1->setPaddingNd(DimsHW{p, p});conv1->setNbGroups(g);IScaleLayer *bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + ".bn", 1e-3);bn1->setName((lname+".bn").data());if(!act){return bn1;}// silu = x * sigmoidauto sig = network->addActivation(*bn1->getOutput(0), ActivationType::kSIGMOID);assert(sig);auto ew = network->addElementWise(*bn1->getOutput(0), *sig->getOutput(0), ElementWiseOperation::kPROD);assert(ew);return ew;}

OK,今天主要是作为TensorRT教程的开端,并构建一个简单的,只有一层卷积的神经网络。后续我们将继续深入探索。

这篇关于TensorRT教程(1)初探TensorRT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1038016

相关文章

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

MySQL 安装配置超完整教程

《MySQL安装配置超完整教程》MySQL是一款广泛使用的开源关系型数据库管理系统(RDBMS),由瑞典MySQLAB公司开发,目前属于Oracle公司旗下产品,:本文主要介绍MySQL安装配置... 目录一、mysql 简介二、下载 MySQL三、安装 MySQL四、配置环境变量五、配置 MySQL5.1

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

Logback在SpringBoot中的详细配置教程

《Logback在SpringBoot中的详细配置教程》SpringBoot默认会加载classpath下的logback-spring.xml(推荐)或logback.xml作为Logback的配置... 目录1. Logback 配置文件2. 基础配置示例3. 关键配置项说明Appender(日志输出器

Kali Linux安装实现教程(亲测有效)

《KaliLinux安装实现教程(亲测有效)》:本文主要介绍KaliLinux安装实现教程(亲测有效),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载二、安装总结一、下载1、点http://www.chinasem.cn击链接 Get Kali | Kal