TensorRT教程(1)初探TensorRT

2024-06-07 03:12
文章标签 教程 初探 tensorrt

本文主要是介绍TensorRT教程(1)初探TensorRT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. TensorRT简要介绍

        TensorRT(NVIDIA TensorRT)是 NVIDIA 开发的一个用于深度学习推理的高性能推理引擎。它可以针对 NVIDIA GPU 进行高效的深度学习推理加速,提供了许多优化技术,使得推理速度更快,并且可以在生产环境中部署。

        下面是 TensorRT 的一些主要特点和功能:

        高性能推理:TensorRT 使用了许多优化技术,包括网络剪枝、量化、层融合、内存优化等,以提高推理速度和效率。这使得 TensorRT 能够在现代 NVIDIA GPU 上实现高性能的深度学习推理。

        多平台支持:TensorRT 提供了多个版本,可以在各种 NVIDIA GPU 上运行,并且支持多种操作系统,包括 Linux 和 Windows。它还提供了 Python API 和 C++ API,以满足不同开发环境和需求。

        灵活的部署选项:TensorRT 提供了多种部署选项,可以满足不同的部署需求。它可以作为独立的推理引擎使用,也可以与其他深度学习框架集成,例如 TensorFlow、PyTorch 等。

      支持常见的深度学习模型:TensorRT 支持常见的深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。它还支持各种网络层,如卷积层、池化层、全连接层等。

        优化技术:TensorRT 提供了多种优化技术,包括网络剪枝、权重量化、层融合、内存优化等。这些优化技术可以显著提高推理速度,并降低内存消耗。

2. PyTorch到TensorRT

        PyTorch已经成为最流行的训练框架之一。

        那么如何将PyTorch训练所得到的权重文件部署到TensorRT中呢?

        一般情况下有两种方式可以实现。

        一种是通过将PyTorch训练的权重转换成为ONNX格式,然后通过TensorRT的OnnxParser推理,或者经过trtexec转换成为tensorrt的engine,然后跨平台推理。

        另一种方式是使用INetworkDefinition自行构建网络,生成tensorrt的engine,然后进行推理。

        前一种方式较为简洁,后一种方式较为复杂,需要对网络非常了解,对网络构建非常明晰。

        本序列课程将基于INetworkDefinition进行网络构建,讲解基于TensorRT的神经网络推理。

3. 初始构建

        首先需要明确一点,TensorRT是基于NCHW的Tensor模式。

        TensorRT的网络推理分为两个部分,首先是构建引擎,然后才可以使用引擎进行推理。

        当然也可以分成一部分,但是为了节省推理时间,我们通常会将构建的因为那个文件序列化,保存在本地,之后在每次推理的时候,反序列化、加载引擎,进行推理。

        初始构建的时候,需要先构建一个INetworkDefinition的对象,并且构建输入数据,参考如下。

INetworkDefinition *network = builder->createNetworkV2(1U);ITensor *data = network->addInput(mInputBlobName, dt, mInputDims);

其中,

mInputBlobName是一个字符串,标识输入Tensor节点的名字。

dt是一个DataType类型的变量,顾名思义,它用来标识输入Tensor的类型。

mInputDims是一个Dims类型的数据,用来表示输入Tensor的Dimension信息。

通过以上两行代码,我们看到了构建了一个空的网络。

4. 添加一个简单的卷积层

前面我们已经知道了如何构建一个空“网络”,那么我们接着添加一个卷积层,组成一个只有一层卷积的卷积神经网络。

    IConvolutionLayer *conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap[lname + ".conv.weight"], emptywts);assert(conv1);conv1->setName((lname+".conv").data());conv1->setStrideNd(DimsHW{s, s});conv1->setPaddingNd(DimsHW{p, p});conv1->setNbGroups(g);

以上演示了在“网络”中添加卷积层。但这样我们比较繁琐,我们最好能够将卷积层进行封装。

ILayer *convBlock(INetworkDefinition *network, std::map<std::string, Weights> &weightMap, ITensor &input, int outch, int ksize, int s, int g, std::string lname, bool act){Weights emptywts{DataType::kFLOAT, nullptr, 0};int p = ksize / 3;IConvolutionLayer *conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap[lname + ".conv.weight"], emptywts);assert(conv1);conv1->setName((lname+".conv").data());conv1->setStrideNd(DimsHW{s, s});conv1->setPaddingNd(DimsHW{p, p});conv1->setNbGroups(g);IScaleLayer *bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + ".bn", 1e-3);bn1->setName((lname+".bn").data());if(!act){return bn1;}// silu = x * sigmoidauto sig = network->addActivation(*bn1->getOutput(0), ActivationType::kSIGMOID);assert(sig);auto ew = network->addElementWise(*bn1->getOutput(0), *sig->getOutput(0), ElementWiseOperation::kPROD);assert(ew);return ew;}

OK,今天主要是作为TensorRT教程的开端,并构建一个简单的,只有一层卷积的神经网络。后续我们将继续深入探索。

这篇关于TensorRT教程(1)初探TensorRT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1038016

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Web实现类似Excel表格锁定功能实战教程

《JavaWeb实现类似Excel表格锁定功能实战教程》本文将详细介绍通过创建特定div元素并利用CSS布局和JavaScript事件监听来实现类似Excel的锁定行和列效果的方法,感兴趣的朋友跟随... 目录1. 模拟Excel表格锁定功能2. 创建3个div元素实现表格锁定2.1 div元素布局设计2.