DSP28335模块配置模板系列——ADC配置模板

2024-06-06 22:12

本文主要是介绍DSP28335模块配置模板系列——ADC配置模板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、配置步骤

1.使能并配置高速时钟HSPCLK、ADC校验

	EALLOW;SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;    EDIS;EALLOW;SysCtrlRegs.HISPCP.all = ADC_MODCLK;	// HSPCLK = SYSCLKOUT/(2*ADC_MODCLK)ADC_cal();EDIS;

这里ADC_MODCLK=3,所以HSPCLK时钟为150/6=25Mhz

2.配置ADC时钟并给ADC上电

AdcRegs.ADCTRL3.all = 0x00E0;
AdcRegs.ADCTRL1.bit.CPS= 0;

ADCTRL3寄存器的5-7位置1表示内部带隙与参考电路上电和其他模拟电路上电;

4-1位置0表示不对HSPCLK进行分频,0位置0表示顺序采样模式;

ADCTRL1的CPS位置0表示不对HSPCLK进行分频,具体的ADCCLK计算公式由以下给出:

ADCCLK=\frac{SYSCLK}{HISPCP*2^{ ADCTRL3[4:1]}*(CPS+1))}

所以这里的ADCCLK被配置为150/6=25Mhz

3.配置ADC模块的工作方式

SEQ_CASCSMODE_SELCONT_RUNSEQ_OVRD
双序列发生器模式顺序采样连续自动序列化模式固定长度循环模式
单序列发生器模式/级联模式并发采样启动/停止模式自然结束循环模式

这里配置ADC模块的工作模式为双序列发生器模式、顺序采样、连续自动序列化模式、自然结束循环模式:

AdcRegs.ADCTRL1.bit.SEQ_CASC = 0;
AdcRegs.ADCTRL3.bit.SMODE_SEL=0;
AdcRegs.ADCTRL1.bit.CONT_RUN = 1; 
AdcRegs.ADCTRL1.bit.SEQ_OVRD = 1; 

至于如何选择ADC模块的工作方式,需要根据实际情况选择,若采样通道不大于8个可以使用双序列发生器模式、顺序采样,这里比较重要的一点是分清楚连续自动序列化模式和启动/停止模式之间的区别。

        当选择连续自动序列化模式且选择自然结束循环模式时,序列发生器完成一个序列的转换时,转换序列将自动重复开始,且不需要等到SOC信号的到来,所以使用连续自动序列化模式时,只需要触发一次SOC信号用于启动第一个转换序列即可,之后的每个序列转换将自动进行,而不需要额外的SOC信号触发。

        当选择启动/停止模式时,序列发生器完成一个序列的转换后,状态指针停留在当前转换的状态,手动复位序列发生器后,状态指针才会重新指向初始位置,且需要等待SOC信号到来才会开始转换。

        实际应用中,如果采用软件触发SOC则需要搭配连续自动序列化模式使用,如果采用Epwm周期性触发SOC则需要搭配启动/停止模式使用。

4.配置序列发生器的最大采样通道数和采样顺序

        这里以采样A0-A7八个通道为例,按A0、A1、A2、...、A7的顺序采样:

  AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0x7;AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // 采样ADCA0AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // 采样ADCA1AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // 采样ADCA2AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // 采样ADCA3AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; // 采样ADCA4AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5; // 采样ADCA5AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6; // 采样ADCA6AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7; // 采样ADCA7

5.选择SOC触发方式

         对于两个序列发生器SEQ1、SEQ2,启动方式有以下几种:

SEQ1SEQ2
软件立即启动(S/W)软件立即启动(S/W)
ePWMx SOCAePWMx SOCB

以软件启动且搭配连续自动序列化模式为例:

AdcRegs.ADCTRL2.bit.SOC_SEQ1=1;//软件启动方式

 epwm触发:

AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;

6.配置ADC中断 

        根据需要可以选择是否配置ADC中断,这里需要在采样完成A7后发送中断申请,所以禁止SEQ1发送中断申请,允许SEQ2发送中断申请,配置步骤如下:

	EALLOW;  PieVectTable.ADCINT = &adc_isr;    //配置adc中断服务函数地址EDIS;    PieCtrlRegs.PIEIER1.bit.INTx6 = 1;    //开启INT1.6中断IER |= M_INT1;                     // 开启第一组中断EINT;         ERTM; AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0; //禁用SEQ1发送中断申请AdcRegs.ADCTRL2.bit.INT_ENA_SEQ2 = 1; //允许SEQ2发送中断申请AdcRegs.ADCTRL2.bit.INT_MOD_SEQ2 = 0; //每个SEQ2序列转换完成后发送一次中断申请

中断服务函数为:

interrupt void  adc_isr(void)
{sampleTable[0] = (AdcRegs.ADCRESULT0) >> 4;sampleTable[1] = (AdcRegs.ADCRESULT1) >> 4;sampleTable[2] = (AdcRegs.ADCRESULT2) >> 4;sampleTable[3] = (AdcRegs.ADCRESULT3) >> 4;sampleTable[4] = (AdcRegs.ADCRESULT4) >> 4;sampleTable[5] = (AdcRegs.ADCRESULT5) >> 4;sampleTable[6] = (AdcRegs.ADCRESULT6) >> 4;sampleTable[7] = (AdcRegs.ADCRESULT7) >> 4;AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;for(i = 0; i < 8; i++){I[i] = (float)sampleTable[i] * 3.0 / 4095.0;}
}

 

二、配置模板

1.采集A0-A7通道,选择顺序采样模式、双序列发生器模式、连续自动序列化模式、自然结束循环模式,配置ADC时钟为25Mhz,软件触发SOC方式,且每次在完成A7转换后进入一次中断服务函数读取结果寄存器的值,完整的配置模板如下:

void InitAdc()
{EALLOW;SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;    EDIS;EALLOW;SysCtrlRegs.HISPCP.all = ADC_MODCLK;	// HSPCLK = SYSCLKOUT/(2*ADC_MODCLK)ADC_cal();EDIS;AdcRegs.ADCTRL3.all = 0x00E0;AdcRegs.ADCTRL1.bit.CPS= 0;AdcRegs.ADCTRL1.bit.SEQ_CASC = 0;AdcRegs.ADCTRL3.bit.SMODE_SEL=0;AdcRegs.ADCTRL1.bit.CONT_RUN = 1; AdcRegs.ADCTRL1.bit.SEQ_OVRD = 1;AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0x7;AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // 采样ADCA0AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // 采样ADCA1AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // 采样ADCA2AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // 采样ADCA3AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; // 采样ADCA4AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5; // 采样ADCA5AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6; // 采样ADCA6AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7; // 采样ADCA7AdcRegs.ADCTRL2.bit.SOC_SEQ1=1;//软件启动方式EALLOW;  PieVectTable.ADCINT = &adc_isr;    //配置adc中断服务函数地址EDIS;    PieCtrlRegs.PIEIER1.bit.INTx6 = 1;    //开启INT1.6中断IER |= M_INT1;                     // 开启第一组中断EINT;         ERTM; AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0; //禁用SEQ1发送中断申请AdcRegs.ADCTRL2.bit.INT_ENA_SEQ2 = 1; //允许SEQ2发送中断申请AdcRegs.ADCTRL2.bit.INT_MOD_SEQ2 = 0; //每个SEQ2序列转换完成后发送一次中断申请
}
interrupt void  adc_isr(void)
{sampleTable[0] = (AdcRegs.ADCRESULT0) >> 4;sampleTable[1] = (AdcRegs.ADCRESULT1) >> 4;sampleTable[2] = (AdcRegs.ADCRESULT2) >> 4;sampleTable[3] = (AdcRegs.ADCRESULT3) >> 4;sampleTable[4] = (AdcRegs.ADCRESULT4) >> 4;sampleTable[5] = (AdcRegs.ADCRESULT5) >> 4;sampleTable[6] = (AdcRegs.ADCRESULT6) >> 4;sampleTable[7] = (AdcRegs.ADCRESULT7) >> 4;AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;for(i = 0; i < 8; i++){I[i] = (float)sampleTable[i] * 3.0 / 4095.0;}
}

2.采集A0-A7通道,选择顺序采样模式、双序列发生器模式、启动/停止模式、配置ADC时钟为25Mhz,Epwm触发SOC方式,且每次在完成A7转换后进入一次中断服务函数读取结果寄存器的值,完整的配置模板如下:

void EPWM6_SOCA_Init(Unit16 tbprd,Unit16 cmpa,Unit cmpb)
{EALLOW;SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;   SysCtrlRegs.PCLKCR1.bit.EPWM6ENCLK = 1;  EDIS;EPwm6Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;  EPwm6Regs.TBCTL.bit.PHSEN = TB_DISABLE;EPwm6Regs.TBPHS.half.TBPHS = 0;EPwm6Regs.TBCTR = 0x0000;                  EPwm6Regs.TBPRD = tbprd;EPwm6Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;   EPwm6Regs.TBCTL.bit.HSPCLKDIV=TB_DIV1; EPwm6Regs.TBCTL.bit.CLKDIV=TB_DIV1;    EPwm6Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;EPwm6Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;EPwm6Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;EPwm6Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;EPwm6Regs.CMPA.half.CMPA = cmpa;    EPwm6Regs.CMPB = cmpb;   EPwm6Regs.ETSEL.bit.SOCAEN = 1;  //使能EPwm6SOCA信号产生EPwm1Regs.ETSEL.bit.SOCASEL = 2;  //当TBCTR=TBPRD时产生SOCA信号      EPwm1Regs.ETPS.bit.SOCAPRD = 1;   //在第一个事件来到时产生SOCA信号	 EALLOW;SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;         EDIS; 
}
void InitAdc()
{EALLOW;SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;    EDIS;EALLOW;SysCtrlRegs.HISPCP.all = ADC_MODCLK;	// HSPCLK = SYSCLKOUT/(2*ADC_MODCLK)ADC_cal();EDIS;AdcRegs.ADCTRL3.all = 0x00E0;AdcRegs.ADCTRL1.bit.CPS= 0;AdcRegs.ADCTRL1.bit.SEQ_CASC = 0;AdcRegs.ADCTRL3.bit.SMODE_SEL=0;AdcRegs.ADCTRL1.bit.CONT_RUN = 0; //启动/停止模式AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0x7;AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // 采样ADCA0AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // 采样ADCA1AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // 采样ADCA2AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // 采样ADCA3AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; // 采样ADCA4AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5; // 采样ADCA5AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6; // 采样ADCA6AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7; // 采样ADCA7AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;//EPWM_SOCA启动方式EALLOW;  PieVectTable.ADCINT = &adc_isr;    //配置adc中断服务函数地址EDIS;    PieCtrlRegs.PIEIER1.bit.INTx6 = 1;    //开启INT1.6中断IER |= M_INT1;                     // 开启第一组中断EINT;         ERTM; AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0; //禁用SEQ1发送中断申请AdcRegs.ADCTRL2.bit.INT_ENA_SEQ2 = 1; //允许SEQ2发送中断申请AdcRegs.ADCTRL2.bit.INT_MOD_SEQ2 = 0; //每个SEQ2序列转换完成后发送一次中断申请
}
interrupt void  adc_isr(void)
{AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; //初始化状态指针位置sampleTable[0] = (AdcRegs.ADCRESULT0) >> 4;sampleTable[1] = (AdcRegs.ADCRESULT1) >> 4;sampleTable[2] = (AdcRegs.ADCRESULT2) >> 4;sampleTable[3] = (AdcRegs.ADCRESULT3) >> 4;sampleTable[4] = (AdcRegs.ADCRESULT4) >> 4;sampleTable[5] = (AdcRegs.ADCRESULT5) >> 4;sampleTable[6] = (AdcRegs.ADCRESULT6) >> 4;sampleTable[7] = (AdcRegs.ADCRESULT7) >> 4;AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;for(i = 0; i < 8; i++){I[i] = (float)sampleTable[i] * 3.0 / 4095.0;}
}

这篇关于DSP28335模块配置模板系列——ADC配置模板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037372

相关文章

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

maven私服配置全过程

《maven私服配置全过程》:本文主要介绍maven私服配置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录使用Nexus作为 公司maven私服maven 私服setttings配置maven项目 pom配置测试效果总结使用Nexus作为 公司maven私

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

CentOS 7 YUM源配置错误的解决方法

《CentOS7YUM源配置错误的解决方法》在使用虚拟机安装CentOS7系统时,我们可能会遇到YUM源配置错误的问题,导致无法正常下载软件包,为了解决这个问题,我们可以替换YUM源... 目录一、备份原有的 YUM 源配置文件二、选择并配置新的 YUM 源三、清理旧的缓存并重建新的缓存四、验证 YUM 源