DSP28335模块配置模板系列——ADC配置模板

2024-06-06 22:12

本文主要是介绍DSP28335模块配置模板系列——ADC配置模板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、配置步骤

1.使能并配置高速时钟HSPCLK、ADC校验

	EALLOW;SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;    EDIS;EALLOW;SysCtrlRegs.HISPCP.all = ADC_MODCLK;	// HSPCLK = SYSCLKOUT/(2*ADC_MODCLK)ADC_cal();EDIS;

这里ADC_MODCLK=3,所以HSPCLK时钟为150/6=25Mhz

2.配置ADC时钟并给ADC上电

AdcRegs.ADCTRL3.all = 0x00E0;
AdcRegs.ADCTRL1.bit.CPS= 0;

ADCTRL3寄存器的5-7位置1表示内部带隙与参考电路上电和其他模拟电路上电;

4-1位置0表示不对HSPCLK进行分频,0位置0表示顺序采样模式;

ADCTRL1的CPS位置0表示不对HSPCLK进行分频,具体的ADCCLK计算公式由以下给出:

ADCCLK=\frac{SYSCLK}{HISPCP*2^{ ADCTRL3[4:1]}*(CPS+1))}

所以这里的ADCCLK被配置为150/6=25Mhz

3.配置ADC模块的工作方式

SEQ_CASCSMODE_SELCONT_RUNSEQ_OVRD
双序列发生器模式顺序采样连续自动序列化模式固定长度循环模式
单序列发生器模式/级联模式并发采样启动/停止模式自然结束循环模式

这里配置ADC模块的工作模式为双序列发生器模式、顺序采样、连续自动序列化模式、自然结束循环模式:

AdcRegs.ADCTRL1.bit.SEQ_CASC = 0;
AdcRegs.ADCTRL3.bit.SMODE_SEL=0;
AdcRegs.ADCTRL1.bit.CONT_RUN = 1; 
AdcRegs.ADCTRL1.bit.SEQ_OVRD = 1; 

至于如何选择ADC模块的工作方式,需要根据实际情况选择,若采样通道不大于8个可以使用双序列发生器模式、顺序采样,这里比较重要的一点是分清楚连续自动序列化模式和启动/停止模式之间的区别。

        当选择连续自动序列化模式且选择自然结束循环模式时,序列发生器完成一个序列的转换时,转换序列将自动重复开始,且不需要等到SOC信号的到来,所以使用连续自动序列化模式时,只需要触发一次SOC信号用于启动第一个转换序列即可,之后的每个序列转换将自动进行,而不需要额外的SOC信号触发。

        当选择启动/停止模式时,序列发生器完成一个序列的转换后,状态指针停留在当前转换的状态,手动复位序列发生器后,状态指针才会重新指向初始位置,且需要等待SOC信号到来才会开始转换。

        实际应用中,如果采用软件触发SOC则需要搭配连续自动序列化模式使用,如果采用Epwm周期性触发SOC则需要搭配启动/停止模式使用。

4.配置序列发生器的最大采样通道数和采样顺序

        这里以采样A0-A7八个通道为例,按A0、A1、A2、...、A7的顺序采样:

  AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0x7;AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // 采样ADCA0AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // 采样ADCA1AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // 采样ADCA2AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // 采样ADCA3AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; // 采样ADCA4AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5; // 采样ADCA5AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6; // 采样ADCA6AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7; // 采样ADCA7

5.选择SOC触发方式

         对于两个序列发生器SEQ1、SEQ2,启动方式有以下几种:

SEQ1SEQ2
软件立即启动(S/W)软件立即启动(S/W)
ePWMx SOCAePWMx SOCB

以软件启动且搭配连续自动序列化模式为例:

AdcRegs.ADCTRL2.bit.SOC_SEQ1=1;//软件启动方式

 epwm触发:

AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;

6.配置ADC中断 

        根据需要可以选择是否配置ADC中断,这里需要在采样完成A7后发送中断申请,所以禁止SEQ1发送中断申请,允许SEQ2发送中断申请,配置步骤如下:

	EALLOW;  PieVectTable.ADCINT = &adc_isr;    //配置adc中断服务函数地址EDIS;    PieCtrlRegs.PIEIER1.bit.INTx6 = 1;    //开启INT1.6中断IER |= M_INT1;                     // 开启第一组中断EINT;         ERTM; AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0; //禁用SEQ1发送中断申请AdcRegs.ADCTRL2.bit.INT_ENA_SEQ2 = 1; //允许SEQ2发送中断申请AdcRegs.ADCTRL2.bit.INT_MOD_SEQ2 = 0; //每个SEQ2序列转换完成后发送一次中断申请

中断服务函数为:

interrupt void  adc_isr(void)
{sampleTable[0] = (AdcRegs.ADCRESULT0) >> 4;sampleTable[1] = (AdcRegs.ADCRESULT1) >> 4;sampleTable[2] = (AdcRegs.ADCRESULT2) >> 4;sampleTable[3] = (AdcRegs.ADCRESULT3) >> 4;sampleTable[4] = (AdcRegs.ADCRESULT4) >> 4;sampleTable[5] = (AdcRegs.ADCRESULT5) >> 4;sampleTable[6] = (AdcRegs.ADCRESULT6) >> 4;sampleTable[7] = (AdcRegs.ADCRESULT7) >> 4;AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;for(i = 0; i < 8; i++){I[i] = (float)sampleTable[i] * 3.0 / 4095.0;}
}

 

二、配置模板

1.采集A0-A7通道,选择顺序采样模式、双序列发生器模式、连续自动序列化模式、自然结束循环模式,配置ADC时钟为25Mhz,软件触发SOC方式,且每次在完成A7转换后进入一次中断服务函数读取结果寄存器的值,完整的配置模板如下:

void InitAdc()
{EALLOW;SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;    EDIS;EALLOW;SysCtrlRegs.HISPCP.all = ADC_MODCLK;	// HSPCLK = SYSCLKOUT/(2*ADC_MODCLK)ADC_cal();EDIS;AdcRegs.ADCTRL3.all = 0x00E0;AdcRegs.ADCTRL1.bit.CPS= 0;AdcRegs.ADCTRL1.bit.SEQ_CASC = 0;AdcRegs.ADCTRL3.bit.SMODE_SEL=0;AdcRegs.ADCTRL1.bit.CONT_RUN = 1; AdcRegs.ADCTRL1.bit.SEQ_OVRD = 1;AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0x7;AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // 采样ADCA0AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // 采样ADCA1AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // 采样ADCA2AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // 采样ADCA3AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; // 采样ADCA4AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5; // 采样ADCA5AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6; // 采样ADCA6AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7; // 采样ADCA7AdcRegs.ADCTRL2.bit.SOC_SEQ1=1;//软件启动方式EALLOW;  PieVectTable.ADCINT = &adc_isr;    //配置adc中断服务函数地址EDIS;    PieCtrlRegs.PIEIER1.bit.INTx6 = 1;    //开启INT1.6中断IER |= M_INT1;                     // 开启第一组中断EINT;         ERTM; AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0; //禁用SEQ1发送中断申请AdcRegs.ADCTRL2.bit.INT_ENA_SEQ2 = 1; //允许SEQ2发送中断申请AdcRegs.ADCTRL2.bit.INT_MOD_SEQ2 = 0; //每个SEQ2序列转换完成后发送一次中断申请
}
interrupt void  adc_isr(void)
{sampleTable[0] = (AdcRegs.ADCRESULT0) >> 4;sampleTable[1] = (AdcRegs.ADCRESULT1) >> 4;sampleTable[2] = (AdcRegs.ADCRESULT2) >> 4;sampleTable[3] = (AdcRegs.ADCRESULT3) >> 4;sampleTable[4] = (AdcRegs.ADCRESULT4) >> 4;sampleTable[5] = (AdcRegs.ADCRESULT5) >> 4;sampleTable[6] = (AdcRegs.ADCRESULT6) >> 4;sampleTable[7] = (AdcRegs.ADCRESULT7) >> 4;AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;for(i = 0; i < 8; i++){I[i] = (float)sampleTable[i] * 3.0 / 4095.0;}
}

2.采集A0-A7通道,选择顺序采样模式、双序列发生器模式、启动/停止模式、配置ADC时钟为25Mhz,Epwm触发SOC方式,且每次在完成A7转换后进入一次中断服务函数读取结果寄存器的值,完整的配置模板如下:

void EPWM6_SOCA_Init(Unit16 tbprd,Unit16 cmpa,Unit cmpb)
{EALLOW;SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;   SysCtrlRegs.PCLKCR1.bit.EPWM6ENCLK = 1;  EDIS;EPwm6Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;  EPwm6Regs.TBCTL.bit.PHSEN = TB_DISABLE;EPwm6Regs.TBPHS.half.TBPHS = 0;EPwm6Regs.TBCTR = 0x0000;                  EPwm6Regs.TBPRD = tbprd;EPwm6Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;   EPwm6Regs.TBCTL.bit.HSPCLKDIV=TB_DIV1; EPwm6Regs.TBCTL.bit.CLKDIV=TB_DIV1;    EPwm6Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;EPwm6Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;EPwm6Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;EPwm6Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;EPwm6Regs.CMPA.half.CMPA = cmpa;    EPwm6Regs.CMPB = cmpb;   EPwm6Regs.ETSEL.bit.SOCAEN = 1;  //使能EPwm6SOCA信号产生EPwm1Regs.ETSEL.bit.SOCASEL = 2;  //当TBCTR=TBPRD时产生SOCA信号      EPwm1Regs.ETPS.bit.SOCAPRD = 1;   //在第一个事件来到时产生SOCA信号	 EALLOW;SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;         EDIS; 
}
void InitAdc()
{EALLOW;SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;    EDIS;EALLOW;SysCtrlRegs.HISPCP.all = ADC_MODCLK;	// HSPCLK = SYSCLKOUT/(2*ADC_MODCLK)ADC_cal();EDIS;AdcRegs.ADCTRL3.all = 0x00E0;AdcRegs.ADCTRL1.bit.CPS= 0;AdcRegs.ADCTRL1.bit.SEQ_CASC = 0;AdcRegs.ADCTRL3.bit.SMODE_SEL=0;AdcRegs.ADCTRL1.bit.CONT_RUN = 0; //启动/停止模式AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0x7;AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // 采样ADCA0AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // 采样ADCA1AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // 采样ADCA2AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // 采样ADCA3AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; // 采样ADCA4AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5; // 采样ADCA5AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6; // 采样ADCA6AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7; // 采样ADCA7AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;//EPWM_SOCA启动方式EALLOW;  PieVectTable.ADCINT = &adc_isr;    //配置adc中断服务函数地址EDIS;    PieCtrlRegs.PIEIER1.bit.INTx6 = 1;    //开启INT1.6中断IER |= M_INT1;                     // 开启第一组中断EINT;         ERTM; AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0; //禁用SEQ1发送中断申请AdcRegs.ADCTRL2.bit.INT_ENA_SEQ2 = 1; //允许SEQ2发送中断申请AdcRegs.ADCTRL2.bit.INT_MOD_SEQ2 = 0; //每个SEQ2序列转换完成后发送一次中断申请
}
interrupt void  adc_isr(void)
{AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; //初始化状态指针位置sampleTable[0] = (AdcRegs.ADCRESULT0) >> 4;sampleTable[1] = (AdcRegs.ADCRESULT1) >> 4;sampleTable[2] = (AdcRegs.ADCRESULT2) >> 4;sampleTable[3] = (AdcRegs.ADCRESULT3) >> 4;sampleTable[4] = (AdcRegs.ADCRESULT4) >> 4;sampleTable[5] = (AdcRegs.ADCRESULT5) >> 4;sampleTable[6] = (AdcRegs.ADCRESULT6) >> 4;sampleTable[7] = (AdcRegs.ADCRESULT7) >> 4;AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;for(i = 0; i < 8; i++){I[i] = (float)sampleTable[i] * 3.0 / 4095.0;}
}

这篇关于DSP28335模块配置模板系列——ADC配置模板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037372

相关文章

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于