python基础——-多任务-正则-装饰器

2024-06-06 21:12

本文主要是介绍python基础——-多任务-正则-装饰器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、多任务

1-进程和线程

进程是操作系统分配资源的最小单元

线程执行程序的的最小单元

线程依赖进程,可以获取进程的资源


一个程序执行 先要创建进程分配资源,然后使用线程执行任务

默认情况下一个进程中有一个线程

2-多任务介绍

运行多个进程或线程执行代码逻辑

多个进程或线程同时执行叫做并行执行

多个进程或线程交替执行叫做并发执行

必行还是并发有cpu个数决定

5个进程 cpu核心是3个 计算时时并发执行 5个进程需要抢占cpu资源,谁抢到谁执行代码计算

5个进程 cpu核心10个 计算时时并行执行 不需要抢占资源,没个进程都已一个独立的cpu核心使用完成计算

多任务在执行计算时,可以执行的同一的计算任务,也可以执行不同的任务

3-多进程

多进程实现多任务就是创建多个进程执行任务函数

任务1 唱歌 任务2 跳舞 任务3 弹吉他

不使用多任务执行

程序执行顺序是从上往下依次执行,如果上一个函数没有执行完成,那么下一个函数,不会被执行

使用多进程实现多任务

import time
from multiprocessing import Process
​
def cook():print('做饭')time.sleep(4)print('饭已做好')
​
def clean():print('扫地')time.sleep(4)print('打扫完成')
​
def play():print('玩游戏')
​
if __name__ == '__main__':# 创建进程p1 = Process(target=cook)p2 = Process(target=clean)p3 = Process(target=play)
​
​# 执行进程p1.start()p2.start()p3.start()

I-任务中的参数传递
import time
from multiprocessing import Process
​
def cook(name):print(f'做{name}')time.sleep(4)print('饭已做好')
​
def clean(a,b,c):print(f'打扫{a},{b},{c}')time.sleep(4)print('打扫完成')
​
def play(name):print(f'玩{name}游戏')
​
if __name__ == '__main__':# 创建进程p1 = Process(target=cook,args=['红烧肉'])p2 = Process(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})p3 = Process(target=play,args=['dota'])
​
​# 执行进程p1.start()p2.start()p3.start()
II-获取进程编号
  • getpid

  • getppid

import time
from multiprocessing import Process
import os
def cook(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')
​# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​print(f'做{name}')time.sleep(4)print('饭已做好')
​
def clean(a,b,c):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​print(f'打扫{a},{b},{c}')time.sleep(4)print('打扫完成')
​
def play(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​
​print(f'玩{name}游戏')
​
if __name__ == '__main__':# 创建子进程p1 = Process(target=cook,args=['红烧肉'])p2 = Process(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})p3 = Process(target=play,args=['dota'])# 执行进程p1.start()p2.start()p3.start()
​# 主进程自己的任务print('主进程')# 使用os模块获取当前进程编号num = os.getpid()print(f'当前主进程编号{num}')

主进程默认情况下是等待子进程结束后在结束整个进程的

也可以通过exit()方法强制退出主进程,所有进程都结束

 

 

III-保证进程的执行顺序

会影响执行效率

如果进程之间没有对应的数据传递关系,可以不用保证顺序,多个进程可以同时执行

如果进程之间有数据传递需求,就要保证执行顺序,通过join操作,但是该操作会影响执行效率

 

import time
from multiprocessing import Process
import os
def cook(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')
​# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​print(f'做{name}')time.sleep(4)print('饭已做好')
​
def clean(a,b,c):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​print(f'打扫{a},{b},{c}')time.sleep(4)print('打扫完成')
​
def play(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​
​print(f'玩{name}游戏')
​
if __name__ == '__main__':# 创建子进程p1 = Process(target=cook,args=['红烧肉'])p2 = Process(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})p3 = Process(target=play,args=['dota'])# 执行进程p1.start()# 使用jion方法保证执行顺序  变成单任务p1.join()p2.start()p2.join()p3.start()p3.join()
​# 主进程自己的任务print('主进程')# 使用os模块获取当前进程编号num = os.getpid()print(f'当前主进程编号{num}') 
IV-进程间的数据不共享

每个进程的资源时独立。数据就不共享

from multiprocessing import Process
a = 1
​
​
def func1():global aa = a + 1print(f'子进程1中的a:{a}')
​
​
def func2():global aa = a + 1print(f'子进程2中的a:{a}')
​
​
if __name__ == '__main__':
​# 创建进程p1 = Process(target=func1)p2 = Process(target=func2)
​p1.start()p2.start()
​print(f'主进程中的a:{a}')

4-多线程

线程依赖进程,可以创建一个进程,在一个进程下创建多个线程执行任务

# 多线程实现多任务
import time
from threading import Thread
import os
def cook(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'做{name}')time.sleep(4)print('饭已做好')
​
def clean(a,b,c):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'打扫{a},{b},{c}')time.sleep(4)print('打扫完成')
​
def play(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'玩{name}游戏')
​
if __name__ == '__main__':
​# 创建线程t1 = Thread(target=cook,args=['梅菜扣肉'])t2 = Thread(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})t3 = Thread(target=play,args=['魔兽世界'])
​t1.start()
​t2.start()
​t3.start()
​
​num = os.getpid()print(f'当前进程编号{num}')
线程任务传参
# 多线程实现多任务
import time
from threading import Thread
import os
def cook(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'做{name}')time.sleep(4)print('饭已做好')
​
def clean(a,b,c):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'打扫{a},{b},{c}')time.sleep(4)print('打扫完成')
​
def play(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'玩{name}游戏')
​
if __name__ == '__main__':
​# 创建线程t1 = Thread(target=cook,args=['梅菜扣肉'])t2 = Thread(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})t3 = Thread(target=play,args=['魔兽世界'])
​t1.start()
​t2.start()
​t3.start()
​
​num = os.getpid()print(f'当前进程编号{num}')
线程执行任务顺序保证

线程的执行顺序也是无序的,如果需要保证线程执行顺讯也是通过join保证

from threading import Thread
import os
def sing(username,singname):print(f'线程1的编号{os.getpid()}')print(f'唱{username}的{singname}歌')
​
def dance(name):print(f'线程2的编号{os.getpid()}')print(f'跳{name}舞')
​
​
def tanzou():print(f'线程3的编号{os.getpid()}')print('弹吉他')
​
if __name__ == '__main__':# 创建线程传递参数t1 = Thread(target=sing,kwargs={'username':'凤凰传奇','singname':'月亮之上'})t2 = Thread(target=dance,args=['圆桌舞'])t3 = Thread(target=tanzou)
​t1.start()t1.join()t2.start()t2.join()t3.start()t3.join()

线程键共享数据

多个线程是在一个进程下运行,他们可以使用同一个进程下的资源

from threading import Thread
a = 1def func1():global aa = a + 1print(f'线程中的a:{a}')def func2():global aa = a + 1print(f'线程中的a:{a}')if __name__ == '__main__':# 创建进程t1 = Thread(target=func1)t2 = Thread(target=func2)t1.start()t2.start()print(f'主进程中的a:{a}')

当共享数据是,多个线程操作同一个数据,那么有可能会因为资源抢占造成计算错误

可以通过join保证数据能完整计算

from threading import Thread
a = 0def func1():global afor i in range(1000000):a = a + 1print(f'func1线程中的a:{a}')def func2():global afor i in range(1000000):a = a + 1print(f'func2线程中的a:{a}')if __name__ == '__main__':# 创建进程t1 = Thread(target=func1)t2 = Thread(target=func2)t1.start()t1.join()t2.start()t2.join()print(f'主进程中的a:{a}')

5-多任务总结

进程和线程

进程是分配资源的最小单元 线程是执行任务的最小单元

实现多任务可以使用多进程或多线

为什么要使用多任务?

提升计算效率,当cpu资源充足是,可以实现多个任务同时执行。

后续spark底层实现采用的多线程方式,spark计算效率很高。spark已经封装实现,开发不需要写多线程。

mapreduce的计算是使用多进程方式实现多任务

实际开发为什么不用多进程实现多任务?更多是采用多线程?

创建进程的开销加大,创建时间长。每创建一个进程都需要额外有计算机分配资源,分配资源也会耗费时间

多进程间不共享数据

多线程会共享数据,如果发生资源抢占会造成数据计算错误

主进程会等到所有任务结束后再结束

二、闭包

在一个函数中定义一个新的函数,把内部函数 当成返回值进行返回,就是一个闭包

使用闭包是为了保存函数的中的局部变量数据

默认情况下 函数执行结束后,内部的局部变量对应的数据会被清除

想保留数据就需要借助闭包

# 局部变量的销毁问题def func():# 局部变量a = 10a = a+1print(a)func() # 函数调用结束后内部局部变量会自动销毁
func() # 第二次调用函数时,会重新定义局部变量,重新计算print('---------------------------')
# 使用闭包可以将局部变量保存下来,每次调用函数时,使用同一个局部变量操作
# 闭包的格式是函数的嵌套定义
def func1():# 定义局部变量a = 10def func2():# 内部声明局部变量nonlocal aa = a+1print(a)# 将内部定义的函数名返回return func2f2 = func1() # f2=func2
# 使用加法计算
f2()
f2()

定义闭包

1-要有函数嵌套定义

2-必须将内部函数的名称返回

使用闭包的场景

1-计数器

2-装饰器

三、装饰器

在不改变原有函数的基础上增加新的业务逻辑

1-闭包

2-函数可以当成参数传递

# 使用闭包定义装饰器
def func1(f):# 外部函数定义接受参数,参数的类型要求是其他函数# f需要接受其他函数,就是需要装饰修改逻辑的函数def func2():# 调用之前增加登录判断print('登录成功')# 调用需要修改执行的函数f()# 返回内部函数return func2# 支付功能已经编写完成,不能再随意修改,如果此时需要再支付中增加一个登录判断如何实现
def pay():print('支付')
# 调用装饰器
f2 = func1(pay) # f=pay  f2 = func2
f2()def order():print('下单')

  • 被装饰的函数数据返回

def login(f):"""登录装饰器:param f: 接收被装饰的函数:return:"""def inner(name, password):# 编写登录逻辑if name == '张三':if password == '123456':print('登录成功')# 登录成执行被装饰的函数# 可以给传递数据和接收返回值res= f(1000)print(res)else:print('密码错误')else:print('用户名错误')return innerdef pay(price):print('订单支付逻辑')print(f'支付金额{price}')return '支付成功'# 使用装饰器装饰支付函数
f = login(pay)
# f = inner
f('张三','123456')
  • 采用语法糖格式使用装饰器

    • 语法糖格式 @装饰器函数名

def login(f):"""登录装饰器:param f: 接收被装饰的函数:return:"""def inner(name, password,price):# 编写登录逻辑if name == '张三':if password == '123456':print('登录成功')# 登录成执行被装饰的函数res= f(price)print(res)else:print('密码错误')else:print('用户名错误')return inner# 使用语法糖
@login
def pay(price):print('订单支付逻辑')print(f'支付金额{price}')return '支付成功'# 调用被装饰的函数
# 此时pay函数变成了inneer函数
pay('张三','123456',1000)

四、正则

采用正则的方式匹配字符串的中的数据,可以进行数据的判断或则获取数据

在读取文件数据时,文件中都是字符串,可以使用正则匹配。

正则最多的应用是爬虫

爬虫会爬取网络中的数据,数据是字符串类型,需要提取字符串中的数据

使用正则处理字符串数据需要导入对应的模块

import re

# match的匹配是从首字符开始匹配   从左到右一次匹配字符串中的每个字符
r=re.match('匹配数据的规则','匹配的数据本身,类型是字符')
# 获取匹配结果
data = r.group()
print(data)

匹配单个字符

# 使用正则匹配单个字符
import re
# 需要匹配的数据,类型是字符串
data = '!123itcast'
# .的匹配 匹配非\n
r = re.match('.',data)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'. 的正则匹配结果:{res}')# [] 匹配 可以在括号写多个匹配字符 a-z 匹配所有小写字母
r = re.match('[a-zA-Z0-9!]',data)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'[] 的正则匹配结果:{res}')# \d 匹配数字
# r = re.match('\d',data)
# # 获取匹配的数据
# res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
# print(f'\d 的正则匹配结果:{res}')# \D
r = re.match('\D',data)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'\D 的正则匹配结果:{res}')data_str2 = '   itcast'
r = re.match('\s',data_str2)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'\s 的正则匹配结果:{res}')data_str3 ='你好'
r = re.match('\w',data_str3)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'\w 的正则匹配结果:{res}')

匹配多个字符

# 匹配多个字符
import re
# 书写方法 匹配规则+  匹配规则*  ...data_str = 'itc99ast99python'
# 使用* 匹配多个字符
# 只要符合匹配规则会一直连续匹配
# * 匹配不到 返回空字符
r = re.match('\d*',data_str)
res = r.group()
print(res)# 使用+匹配多个字符
# 只要符合匹配规则会一直连续匹配
# + 匹配不到 报错
r = re.match('\D+',data_str)
res = r.group()
print(res)# {}指定匹配的字符串个数
r = re.match('\D{3}',data_str)
res = r.group()
print(res)# {m,n}
r = re.match('\D{2,4}',data_str)
res = r.group()
print(res)

分组匹配

data_email1 = '1928738@qq.com'
data_email2 = 'jqiowe@163.com'
data_email3 = 'jqi_wqe@163.com'
# 匹配用户名和邮箱名
r = re.match('(\w*)@(\w*).com',data_email3)
# 取匹配的分组数据
username = r.group(1)
print(username)
emailname = r.group(2)
print(emailname)

这篇关于python基础——-多任务-正则-装饰器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037244

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统