python基础——-多任务-正则-装饰器

2024-06-06 21:12

本文主要是介绍python基础——-多任务-正则-装饰器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、多任务

1-进程和线程

进程是操作系统分配资源的最小单元

线程执行程序的的最小单元

线程依赖进程,可以获取进程的资源


一个程序执行 先要创建进程分配资源,然后使用线程执行任务

默认情况下一个进程中有一个线程

2-多任务介绍

运行多个进程或线程执行代码逻辑

多个进程或线程同时执行叫做并行执行

多个进程或线程交替执行叫做并发执行

必行还是并发有cpu个数决定

5个进程 cpu核心是3个 计算时时并发执行 5个进程需要抢占cpu资源,谁抢到谁执行代码计算

5个进程 cpu核心10个 计算时时并行执行 不需要抢占资源,没个进程都已一个独立的cpu核心使用完成计算

多任务在执行计算时,可以执行的同一的计算任务,也可以执行不同的任务

3-多进程

多进程实现多任务就是创建多个进程执行任务函数

任务1 唱歌 任务2 跳舞 任务3 弹吉他

不使用多任务执行

程序执行顺序是从上往下依次执行,如果上一个函数没有执行完成,那么下一个函数,不会被执行

使用多进程实现多任务

import time
from multiprocessing import Process
​
def cook():print('做饭')time.sleep(4)print('饭已做好')
​
def clean():print('扫地')time.sleep(4)print('打扫完成')
​
def play():print('玩游戏')
​
if __name__ == '__main__':# 创建进程p1 = Process(target=cook)p2 = Process(target=clean)p3 = Process(target=play)
​
​# 执行进程p1.start()p2.start()p3.start()

I-任务中的参数传递
import time
from multiprocessing import Process
​
def cook(name):print(f'做{name}')time.sleep(4)print('饭已做好')
​
def clean(a,b,c):print(f'打扫{a},{b},{c}')time.sleep(4)print('打扫完成')
​
def play(name):print(f'玩{name}游戏')
​
if __name__ == '__main__':# 创建进程p1 = Process(target=cook,args=['红烧肉'])p2 = Process(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})p3 = Process(target=play,args=['dota'])
​
​# 执行进程p1.start()p2.start()p3.start()
II-获取进程编号
  • getpid

  • getppid

import time
from multiprocessing import Process
import os
def cook(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')
​# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​print(f'做{name}')time.sleep(4)print('饭已做好')
​
def clean(a,b,c):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​print(f'打扫{a},{b},{c}')time.sleep(4)print('打扫完成')
​
def play(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​
​print(f'玩{name}游戏')
​
if __name__ == '__main__':# 创建子进程p1 = Process(target=cook,args=['红烧肉'])p2 = Process(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})p3 = Process(target=play,args=['dota'])# 执行进程p1.start()p2.start()p3.start()
​# 主进程自己的任务print('主进程')# 使用os模块获取当前进程编号num = os.getpid()print(f'当前主进程编号{num}')

主进程默认情况下是等待子进程结束后在结束整个进程的

也可以通过exit()方法强制退出主进程,所有进程都结束

 

 

III-保证进程的执行顺序

会影响执行效率

如果进程之间没有对应的数据传递关系,可以不用保证顺序,多个进程可以同时执行

如果进程之间有数据传递需求,就要保证执行顺序,通过join操作,但是该操作会影响执行效率

 

import time
from multiprocessing import Process
import os
def cook(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')
​# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​print(f'做{name}')time.sleep(4)print('饭已做好')
​
def clean(a,b,c):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​print(f'打扫{a},{b},{c}')time.sleep(4)print('打扫完成')
​
def play(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前子进程编号{num}')# 获取父进程编号p_num = os.getppid()print(f'当前子进程父进程编号{p_num}')
​
​print(f'玩{name}游戏')
​
if __name__ == '__main__':# 创建子进程p1 = Process(target=cook,args=['红烧肉'])p2 = Process(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})p3 = Process(target=play,args=['dota'])# 执行进程p1.start()# 使用jion方法保证执行顺序  变成单任务p1.join()p2.start()p2.join()p3.start()p3.join()
​# 主进程自己的任务print('主进程')# 使用os模块获取当前进程编号num = os.getpid()print(f'当前主进程编号{num}') 
IV-进程间的数据不共享

每个进程的资源时独立。数据就不共享

from multiprocessing import Process
a = 1
​
​
def func1():global aa = a + 1print(f'子进程1中的a:{a}')
​
​
def func2():global aa = a + 1print(f'子进程2中的a:{a}')
​
​
if __name__ == '__main__':
​# 创建进程p1 = Process(target=func1)p2 = Process(target=func2)
​p1.start()p2.start()
​print(f'主进程中的a:{a}')

4-多线程

线程依赖进程,可以创建一个进程,在一个进程下创建多个线程执行任务

# 多线程实现多任务
import time
from threading import Thread
import os
def cook(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'做{name}')time.sleep(4)print('饭已做好')
​
def clean(a,b,c):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'打扫{a},{b},{c}')time.sleep(4)print('打扫完成')
​
def play(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'玩{name}游戏')
​
if __name__ == '__main__':
​# 创建线程t1 = Thread(target=cook,args=['梅菜扣肉'])t2 = Thread(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})t3 = Thread(target=play,args=['魔兽世界'])
​t1.start()
​t2.start()
​t3.start()
​
​num = os.getpid()print(f'当前进程编号{num}')
线程任务传参
# 多线程实现多任务
import time
from threading import Thread
import os
def cook(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'做{name}')time.sleep(4)print('饭已做好')
​
def clean(a,b,c):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'打扫{a},{b},{c}')time.sleep(4)print('打扫完成')
​
def play(name):# 使用os模块获取当前进程编号num = os.getpid()print(f'当前进程编号{num}')
​print(f'玩{name}游戏')
​
if __name__ == '__main__':
​# 创建线程t1 = Thread(target=cook,args=['梅菜扣肉'])t2 = Thread(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})t3 = Thread(target=play,args=['魔兽世界'])
​t1.start()
​t2.start()
​t3.start()
​
​num = os.getpid()print(f'当前进程编号{num}')
线程执行任务顺序保证

线程的执行顺序也是无序的,如果需要保证线程执行顺讯也是通过join保证

from threading import Thread
import os
def sing(username,singname):print(f'线程1的编号{os.getpid()}')print(f'唱{username}的{singname}歌')
​
def dance(name):print(f'线程2的编号{os.getpid()}')print(f'跳{name}舞')
​
​
def tanzou():print(f'线程3的编号{os.getpid()}')print('弹吉他')
​
if __name__ == '__main__':# 创建线程传递参数t1 = Thread(target=sing,kwargs={'username':'凤凰传奇','singname':'月亮之上'})t2 = Thread(target=dance,args=['圆桌舞'])t3 = Thread(target=tanzou)
​t1.start()t1.join()t2.start()t2.join()t3.start()t3.join()

线程键共享数据

多个线程是在一个进程下运行,他们可以使用同一个进程下的资源

from threading import Thread
a = 1def func1():global aa = a + 1print(f'线程中的a:{a}')def func2():global aa = a + 1print(f'线程中的a:{a}')if __name__ == '__main__':# 创建进程t1 = Thread(target=func1)t2 = Thread(target=func2)t1.start()t2.start()print(f'主进程中的a:{a}')

当共享数据是,多个线程操作同一个数据,那么有可能会因为资源抢占造成计算错误

可以通过join保证数据能完整计算

from threading import Thread
a = 0def func1():global afor i in range(1000000):a = a + 1print(f'func1线程中的a:{a}')def func2():global afor i in range(1000000):a = a + 1print(f'func2线程中的a:{a}')if __name__ == '__main__':# 创建进程t1 = Thread(target=func1)t2 = Thread(target=func2)t1.start()t1.join()t2.start()t2.join()print(f'主进程中的a:{a}')

5-多任务总结

进程和线程

进程是分配资源的最小单元 线程是执行任务的最小单元

实现多任务可以使用多进程或多线

为什么要使用多任务?

提升计算效率,当cpu资源充足是,可以实现多个任务同时执行。

后续spark底层实现采用的多线程方式,spark计算效率很高。spark已经封装实现,开发不需要写多线程。

mapreduce的计算是使用多进程方式实现多任务

实际开发为什么不用多进程实现多任务?更多是采用多线程?

创建进程的开销加大,创建时间长。每创建一个进程都需要额外有计算机分配资源,分配资源也会耗费时间

多进程间不共享数据

多线程会共享数据,如果发生资源抢占会造成数据计算错误

主进程会等到所有任务结束后再结束

二、闭包

在一个函数中定义一个新的函数,把内部函数 当成返回值进行返回,就是一个闭包

使用闭包是为了保存函数的中的局部变量数据

默认情况下 函数执行结束后,内部的局部变量对应的数据会被清除

想保留数据就需要借助闭包

# 局部变量的销毁问题def func():# 局部变量a = 10a = a+1print(a)func() # 函数调用结束后内部局部变量会自动销毁
func() # 第二次调用函数时,会重新定义局部变量,重新计算print('---------------------------')
# 使用闭包可以将局部变量保存下来,每次调用函数时,使用同一个局部变量操作
# 闭包的格式是函数的嵌套定义
def func1():# 定义局部变量a = 10def func2():# 内部声明局部变量nonlocal aa = a+1print(a)# 将内部定义的函数名返回return func2f2 = func1() # f2=func2
# 使用加法计算
f2()
f2()

定义闭包

1-要有函数嵌套定义

2-必须将内部函数的名称返回

使用闭包的场景

1-计数器

2-装饰器

三、装饰器

在不改变原有函数的基础上增加新的业务逻辑

1-闭包

2-函数可以当成参数传递

# 使用闭包定义装饰器
def func1(f):# 外部函数定义接受参数,参数的类型要求是其他函数# f需要接受其他函数,就是需要装饰修改逻辑的函数def func2():# 调用之前增加登录判断print('登录成功')# 调用需要修改执行的函数f()# 返回内部函数return func2# 支付功能已经编写完成,不能再随意修改,如果此时需要再支付中增加一个登录判断如何实现
def pay():print('支付')
# 调用装饰器
f2 = func1(pay) # f=pay  f2 = func2
f2()def order():print('下单')

  • 被装饰的函数数据返回

def login(f):"""登录装饰器:param f: 接收被装饰的函数:return:"""def inner(name, password):# 编写登录逻辑if name == '张三':if password == '123456':print('登录成功')# 登录成执行被装饰的函数# 可以给传递数据和接收返回值res= f(1000)print(res)else:print('密码错误')else:print('用户名错误')return innerdef pay(price):print('订单支付逻辑')print(f'支付金额{price}')return '支付成功'# 使用装饰器装饰支付函数
f = login(pay)
# f = inner
f('张三','123456')
  • 采用语法糖格式使用装饰器

    • 语法糖格式 @装饰器函数名

def login(f):"""登录装饰器:param f: 接收被装饰的函数:return:"""def inner(name, password,price):# 编写登录逻辑if name == '张三':if password == '123456':print('登录成功')# 登录成执行被装饰的函数res= f(price)print(res)else:print('密码错误')else:print('用户名错误')return inner# 使用语法糖
@login
def pay(price):print('订单支付逻辑')print(f'支付金额{price}')return '支付成功'# 调用被装饰的函数
# 此时pay函数变成了inneer函数
pay('张三','123456',1000)

四、正则

采用正则的方式匹配字符串的中的数据,可以进行数据的判断或则获取数据

在读取文件数据时,文件中都是字符串,可以使用正则匹配。

正则最多的应用是爬虫

爬虫会爬取网络中的数据,数据是字符串类型,需要提取字符串中的数据

使用正则处理字符串数据需要导入对应的模块

import re

# match的匹配是从首字符开始匹配   从左到右一次匹配字符串中的每个字符
r=re.match('匹配数据的规则','匹配的数据本身,类型是字符')
# 获取匹配结果
data = r.group()
print(data)

匹配单个字符

# 使用正则匹配单个字符
import re
# 需要匹配的数据,类型是字符串
data = '!123itcast'
# .的匹配 匹配非\n
r = re.match('.',data)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'. 的正则匹配结果:{res}')# [] 匹配 可以在括号写多个匹配字符 a-z 匹配所有小写字母
r = re.match('[a-zA-Z0-9!]',data)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'[] 的正则匹配结果:{res}')# \d 匹配数字
# r = re.match('\d',data)
# # 获取匹配的数据
# res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
# print(f'\d 的正则匹配结果:{res}')# \D
r = re.match('\D',data)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'\D 的正则匹配结果:{res}')data_str2 = '   itcast'
r = re.match('\s',data_str2)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'\s 的正则匹配结果:{res}')data_str3 ='你好'
r = re.match('\w',data_str3)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'\w 的正则匹配结果:{res}')

匹配多个字符

# 匹配多个字符
import re
# 书写方法 匹配规则+  匹配规则*  ...data_str = 'itc99ast99python'
# 使用* 匹配多个字符
# 只要符合匹配规则会一直连续匹配
# * 匹配不到 返回空字符
r = re.match('\d*',data_str)
res = r.group()
print(res)# 使用+匹配多个字符
# 只要符合匹配规则会一直连续匹配
# + 匹配不到 报错
r = re.match('\D+',data_str)
res = r.group()
print(res)# {}指定匹配的字符串个数
r = re.match('\D{3}',data_str)
res = r.group()
print(res)# {m,n}
r = re.match('\D{2,4}',data_str)
res = r.group()
print(res)

分组匹配

data_email1 = '1928738@qq.com'
data_email2 = 'jqiowe@163.com'
data_email3 = 'jqi_wqe@163.com'
# 匹配用户名和邮箱名
r = re.match('(\w*)@(\w*).com',data_email3)
# 取匹配的分组数据
username = r.group(1)
print(username)
emailname = r.group(2)
print(emailname)

这篇关于python基础——-多任务-正则-装饰器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037244

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal