使用Python实现GLM解码器的示例(带有Tensor Shape标注)

2024-06-06 19:12

本文主要是介绍使用Python实现GLM解码器的示例(带有Tensor Shape标注),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面是一个示例,演示了如何使用Python和PyTorch实现一个基于GLM(Glancing Language Model)原理的解码器,包括对每个Tensor的shape进行标注。

代码示例
import torch
import torch.nn as nn
import torch.nn.functional as Fclass GlancingDecoder(nn.Module):def __init__(self, vocab_size, hidden_dim, num_layers, glance_rate=0.3):super(GlancingDecoder, self).__init__()self.embedding = nn.Embedding(vocab_size, hidden_dim)  # (vocab_size, hidden_dim)self.rnn = nn.GRU(hidden_dim, hidden_dim, num_layers, batch_first=True)  # (hidden_dim, hidden_dim)self.fc = nn.Linear(hidden_dim, vocab_size)  # (hidden_dim, vocab_size)self.glance_rate = glance_ratedef forward(self, encoder_output, target, teacher_forcing_ratio=0.5):batch_size, seq_len = target.size()  # (batch_size, seq_len)hidden = torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size).to(target.device)  # (num_layers, batch_size, hidden_dim)inputs = self.embedding(target[:, 0])  # (batch_size, hidden_dim)outputs = torch.zeros(batch_size, seq_len, self.fc.out_features).to(target.device)  # (batch_size, seq_len, vocab_size)for t in range(1, seq_len):rnn_output, hidden = self.rnn(inputs.unsqueeze(1), hidden)  # inputs: (batch_size, 1, hidden_dim), hidden: (num_layers, batch_size, hidden_dim)output = self.fc(rnn_output.squeeze(1))  # rnn_output: (batch_size, 1, hidden_dim) -> squeeze: (batch_size, hidden_dim) -> output: (batch_size, vocab_size)outputs[:, t, :] = output  # (batch_size, seq_len, vocab_size)teacher_force = torch.rand(1).item() < teacher_forcing_ratioinputs = self.embedding(target[:, t]) if teacher_force else output  # (batch_size, hidden_dim)# Glancing mechanism: randomly replace some inputs with ground truth tokensif torch.rand(1).item() < self.glance_rate:glance_mask = torch.rand(batch_size).to(target.device) < self.glance_rateinputs[glance_mask] = self.embedding(target[:, t][glance_mask])  # (batch_size, hidden_dim)return outputs  # (batch_size, seq_len, vocab_size)# 假设一些参数
vocab_size = 1000
hidden_dim = 256
num_layers = 2
seq_len = 10# 假设一些输入
encoder_output = torch.randn(32, seq_len, hidden_dim)  # (batch_size, seq_len, hidden_dim)
target = torch.randint(0, vocab_size, (32, seq_len))  # (batch_size, seq_len)# 创建解码器实例
decoder = GlancingDecoder(vocab_size, hidden_dim, num_layers)
output = decoder(encoder_output, target)print(output.shape)  # (batch_size, seq_len, vocab_size)

代码解释

  1. 初始化

    • GlancingDecoder 类初始化了嵌入层、GRU层和全连接层。
    • glance_rate 参数决定了在每次迭代中有多少比例的输入会被真实的目标词替换。
  2. 前向传播

    • 使用 embedding 将目标序列嵌入到隐层空间。
    • 使用 GRU 层对嵌入进行处理,并通过全连接层生成预测。
    • 在每次时间步,使用teacher forcing来决定下一个输入是模型的输出还是实际的目标词。
    • glance_rate 决定了在每次时间步中,有多大比例的输入会被真实目标词替换。

Tensor Shape 标注

  • embedding 层:输入是 (batch_size, 1),输出是 (batch_size, hidden_dim)
  • rnn 层:输入是 (batch_size, 1, hidden_dim),输出是 (batch_size, 1, hidden_dim)
  • fc 层:输入是 (batch_size, hidden_dim),输出是 (batch_size, vocab_size)

通过这种方式,GLM能够在保持并行解码效率的同时,通过多次迭代和glancing机制来提高生成序列的质量。


中文语音识别转写:FunSound中文语音识别

这篇关于使用Python实现GLM解码器的示例(带有Tensor Shape标注)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036983

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置