使用Python实现GLM解码器的示例(带有Tensor Shape标注)

2024-06-06 19:12

本文主要是介绍使用Python实现GLM解码器的示例(带有Tensor Shape标注),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面是一个示例,演示了如何使用Python和PyTorch实现一个基于GLM(Glancing Language Model)原理的解码器,包括对每个Tensor的shape进行标注。

代码示例
import torch
import torch.nn as nn
import torch.nn.functional as Fclass GlancingDecoder(nn.Module):def __init__(self, vocab_size, hidden_dim, num_layers, glance_rate=0.3):super(GlancingDecoder, self).__init__()self.embedding = nn.Embedding(vocab_size, hidden_dim)  # (vocab_size, hidden_dim)self.rnn = nn.GRU(hidden_dim, hidden_dim, num_layers, batch_first=True)  # (hidden_dim, hidden_dim)self.fc = nn.Linear(hidden_dim, vocab_size)  # (hidden_dim, vocab_size)self.glance_rate = glance_ratedef forward(self, encoder_output, target, teacher_forcing_ratio=0.5):batch_size, seq_len = target.size()  # (batch_size, seq_len)hidden = torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size).to(target.device)  # (num_layers, batch_size, hidden_dim)inputs = self.embedding(target[:, 0])  # (batch_size, hidden_dim)outputs = torch.zeros(batch_size, seq_len, self.fc.out_features).to(target.device)  # (batch_size, seq_len, vocab_size)for t in range(1, seq_len):rnn_output, hidden = self.rnn(inputs.unsqueeze(1), hidden)  # inputs: (batch_size, 1, hidden_dim), hidden: (num_layers, batch_size, hidden_dim)output = self.fc(rnn_output.squeeze(1))  # rnn_output: (batch_size, 1, hidden_dim) -> squeeze: (batch_size, hidden_dim) -> output: (batch_size, vocab_size)outputs[:, t, :] = output  # (batch_size, seq_len, vocab_size)teacher_force = torch.rand(1).item() < teacher_forcing_ratioinputs = self.embedding(target[:, t]) if teacher_force else output  # (batch_size, hidden_dim)# Glancing mechanism: randomly replace some inputs with ground truth tokensif torch.rand(1).item() < self.glance_rate:glance_mask = torch.rand(batch_size).to(target.device) < self.glance_rateinputs[glance_mask] = self.embedding(target[:, t][glance_mask])  # (batch_size, hidden_dim)return outputs  # (batch_size, seq_len, vocab_size)# 假设一些参数
vocab_size = 1000
hidden_dim = 256
num_layers = 2
seq_len = 10# 假设一些输入
encoder_output = torch.randn(32, seq_len, hidden_dim)  # (batch_size, seq_len, hidden_dim)
target = torch.randint(0, vocab_size, (32, seq_len))  # (batch_size, seq_len)# 创建解码器实例
decoder = GlancingDecoder(vocab_size, hidden_dim, num_layers)
output = decoder(encoder_output, target)print(output.shape)  # (batch_size, seq_len, vocab_size)

代码解释

  1. 初始化

    • GlancingDecoder 类初始化了嵌入层、GRU层和全连接层。
    • glance_rate 参数决定了在每次迭代中有多少比例的输入会被真实的目标词替换。
  2. 前向传播

    • 使用 embedding 将目标序列嵌入到隐层空间。
    • 使用 GRU 层对嵌入进行处理,并通过全连接层生成预测。
    • 在每次时间步,使用teacher forcing来决定下一个输入是模型的输出还是实际的目标词。
    • glance_rate 决定了在每次时间步中,有多大比例的输入会被真实目标词替换。

Tensor Shape 标注

  • embedding 层:输入是 (batch_size, 1),输出是 (batch_size, hidden_dim)
  • rnn 层:输入是 (batch_size, 1, hidden_dim),输出是 (batch_size, 1, hidden_dim)
  • fc 层:输入是 (batch_size, hidden_dim),输出是 (batch_size, vocab_size)

通过这种方式,GLM能够在保持并行解码效率的同时,通过多次迭代和glancing机制来提高生成序列的质量。


中文语音识别转写:FunSound中文语音识别

这篇关于使用Python实现GLM解码器的示例(带有Tensor Shape标注)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036983

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1