使用Python实现GLM解码器的示例(带有Tensor Shape标注)

2024-06-06 19:12

本文主要是介绍使用Python实现GLM解码器的示例(带有Tensor Shape标注),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面是一个示例,演示了如何使用Python和PyTorch实现一个基于GLM(Glancing Language Model)原理的解码器,包括对每个Tensor的shape进行标注。

代码示例
import torch
import torch.nn as nn
import torch.nn.functional as Fclass GlancingDecoder(nn.Module):def __init__(self, vocab_size, hidden_dim, num_layers, glance_rate=0.3):super(GlancingDecoder, self).__init__()self.embedding = nn.Embedding(vocab_size, hidden_dim)  # (vocab_size, hidden_dim)self.rnn = nn.GRU(hidden_dim, hidden_dim, num_layers, batch_first=True)  # (hidden_dim, hidden_dim)self.fc = nn.Linear(hidden_dim, vocab_size)  # (hidden_dim, vocab_size)self.glance_rate = glance_ratedef forward(self, encoder_output, target, teacher_forcing_ratio=0.5):batch_size, seq_len = target.size()  # (batch_size, seq_len)hidden = torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size).to(target.device)  # (num_layers, batch_size, hidden_dim)inputs = self.embedding(target[:, 0])  # (batch_size, hidden_dim)outputs = torch.zeros(batch_size, seq_len, self.fc.out_features).to(target.device)  # (batch_size, seq_len, vocab_size)for t in range(1, seq_len):rnn_output, hidden = self.rnn(inputs.unsqueeze(1), hidden)  # inputs: (batch_size, 1, hidden_dim), hidden: (num_layers, batch_size, hidden_dim)output = self.fc(rnn_output.squeeze(1))  # rnn_output: (batch_size, 1, hidden_dim) -> squeeze: (batch_size, hidden_dim) -> output: (batch_size, vocab_size)outputs[:, t, :] = output  # (batch_size, seq_len, vocab_size)teacher_force = torch.rand(1).item() < teacher_forcing_ratioinputs = self.embedding(target[:, t]) if teacher_force else output  # (batch_size, hidden_dim)# Glancing mechanism: randomly replace some inputs with ground truth tokensif torch.rand(1).item() < self.glance_rate:glance_mask = torch.rand(batch_size).to(target.device) < self.glance_rateinputs[glance_mask] = self.embedding(target[:, t][glance_mask])  # (batch_size, hidden_dim)return outputs  # (batch_size, seq_len, vocab_size)# 假设一些参数
vocab_size = 1000
hidden_dim = 256
num_layers = 2
seq_len = 10# 假设一些输入
encoder_output = torch.randn(32, seq_len, hidden_dim)  # (batch_size, seq_len, hidden_dim)
target = torch.randint(0, vocab_size, (32, seq_len))  # (batch_size, seq_len)# 创建解码器实例
decoder = GlancingDecoder(vocab_size, hidden_dim, num_layers)
output = decoder(encoder_output, target)print(output.shape)  # (batch_size, seq_len, vocab_size)

代码解释

  1. 初始化

    • GlancingDecoder 类初始化了嵌入层、GRU层和全连接层。
    • glance_rate 参数决定了在每次迭代中有多少比例的输入会被真实的目标词替换。
  2. 前向传播

    • 使用 embedding 将目标序列嵌入到隐层空间。
    • 使用 GRU 层对嵌入进行处理,并通过全连接层生成预测。
    • 在每次时间步,使用teacher forcing来决定下一个输入是模型的输出还是实际的目标词。
    • glance_rate 决定了在每次时间步中,有多大比例的输入会被真实目标词替换。

Tensor Shape 标注

  • embedding 层:输入是 (batch_size, 1),输出是 (batch_size, hidden_dim)
  • rnn 层:输入是 (batch_size, 1, hidden_dim),输出是 (batch_size, 1, hidden_dim)
  • fc 层:输入是 (batch_size, hidden_dim),输出是 (batch_size, vocab_size)

通过这种方式,GLM能够在保持并行解码效率的同时,通过多次迭代和glancing机制来提高生成序列的质量。


中文语音识别转写:FunSound中文语音识别

这篇关于使用Python实现GLM解码器的示例(带有Tensor Shape标注)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1036983

相关文章

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PyQt6中QMainWindow组件的使用详解

《PyQt6中QMainWindow组件的使用详解》QMainWindow是PyQt6中用于构建桌面应用程序的基础组件,本文主要介绍了PyQt6中QMainWindow组件的使用,具有一定的参考价值,... 目录1. QMainWindow 组php件概述2. 使用 QMainWindow3. QMainW

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据