【C++】访问者模式

2024-06-06 18:48
文章标签 c++ 模式 访问者

本文主要是介绍【C++】访问者模式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

根据对象类型执行不同的功能,就是对象类型到功能之间的映射需求:

#include <iostream>
using namespace std;class Base {
public :virtual void say() = 0;virtual ~Base() {}
};class A : public Base {
public :void say() override {cout << "Class A" << endl;}
};class B : public Base {
public :void say() override {cout << "Class B" << endl;}
};class C : public Base {
public :void say() override {cout << "Class C" << endl;}
};
class D : public Base {
public :void say() override {cout << "Class D" << endl;}
};class E : public Base {
public :void say() override {cout << "Class E" << endl;}
};void func_A() {cout << "func A" << endl;
}void func_B() {cout << "func B" << endl;
}void func_C() {cout << "func C" << endl;
}void func_D() {cout << "func D" << endl;
}void func_E() {cout << "func E" << endl;
}int main() {srand(time(0));Base *p = nullptr;switch (rand() % 5) {case 0 : p = new A(); break;case 1 : p = new B(); break;case 2 : p = new C(); break;case 3 : p = new D(); break;case 4 : p = new E(); break;}p->say();//根据p对象类型执行不同的功能if (dynamic_cast<A *>(p)) {func_A();} else if (dynamic_cast<B *>(p)) {func_B();} else if (dynamic_cast<C *>(p)) {func_C();} else if (dynamic_cast<D *>(p)) {func_D();} else if (dynamic_cast<E *>(p)) {func_E();}return 0;
}

代码中存在的问题:

  1. 新增子类后可能会漏修改关键代码,导致隐藏严重的bug,维护成本高;
  2. 效率低

正确地执行到某个 func 方法的时间复杂度是 O ( n ) O(n) O(n)

访问者模式就是为了完成对象类型到功能需求的映射。

设计的核心在于将要映射的功能封装成一个类,让编译器改代码。

用访问者模式完成上面的代码相同的功能:

#include <iostream>
using namespace std;class A;
class B;
class C;
class D;
class E;class Base {
public :class IVisitor { //访问Base类的派生类的访问者的接口类public :virtual void visit(A *) = 0;virtual void visit(B *) = 0;virtual void visit(C *) = 0;virtual void visit(D *) = 0;virtual void visit(E *) = 0;};virtual void say() = 0;virtual void Accept(IVisitor *) = 0;virtual ~Base() {}
};class A : public Base {
public :void say() override {cout << "Class A" << endl;}void Accept(IVisitor *vis) override {vis->visit(this);return ;}
};class B : public Base {
public :void say() override {cout << "Class B" << endl;}void Accept(IVisitor *vis) override {vis->visit(this);return ;}
};class C : public Base {
public :void say() override {cout << "Class C" << endl;}void Accept(IVisitor *vis) override {vis->visit(this);return ;}
};
class D : public Base {
public :void say() override {cout << "Class D" << endl;}void Accept(IVisitor *vis) override {vis->visit(this);return ;}
};class E : public Base {
public :void say() override {cout << "Class E" << endl;}void Accept(IVisitor *vis) override {vis->visit(this);return ;}
};class outputVisitor : public  Base::IVisitor {
public :void visit(A *obj) {cout << "func A" << endl;}void visit(B *obj) {cout << "func B" << endl;}void visit(C *obj) {cout << "func C" << endl;}void visit(D *obj) {cout << "func D" << endl;}void visit(E *obj) {cout << "func E" << endl;}
};int main() {srand(time(0));Base *p = nullptr;switch (rand() % 5) {case 0 : p = new A(); break;case 1 : p = new B(); break;case 2 : p = new C(); break;case 3 : p = new D(); break;case 4 : p = new E(); break;}p->say();outputVisitor vis;p->Accept(&vis);return 0;
} 

p 到具体的对象类型的时间复杂度是 O ( 1 ) O(1) O(1),而再到对象对应的visit方法的时间复杂度也是 O ( 1 ) O(1) O(1),即是说正确指定到对象类型的功能的时间复杂度是 O ( 1 ) O(1) O(1)

访问者模式利用虚函数的技巧,完成了两次跳转,第一次跳转定位到相关类中的Accept方法,第二次跳转将相关类的this指针传给visit方法,准确定位到哪个visit方法。即利用两次指针类型的转换定位到相关功能执行的具体过程。访问者模式不存在相关的效率问题。


根据对象类型映射到功能需求可以考虑访问者模式


对于不同的对象类型对x做不同的操作:

  • A : x -> 2x

  • B : x -> x - 3

  • C : x -> x + 6

  • D : x -> x / 3

  • E : x -> x - 2

代码实现:

#include <iostream>
using namespace std;class A;
class B;
class C;
class D;
class E;class Base {
public :class IVisitor { //访问Base类的派生类的访问者的接口类public :virtual void visit(A *) = 0;virtual void visit(B *) = 0;virtual void visit(C *) = 0;virtual void visit(D *) = 0;virtual void visit(E *) = 0;};virtual void say() = 0;virtual void Accept(IVisitor *) = 0;virtual ~Base() {}
};class A : public Base {
public :void say() override {cout << "Class A" << endl;}void Accept(IVisitor *vis) override {vis->visit(this);return ;}
};class B : public Base {
public :void say() override {cout << "Class B" << endl;}void Accept(IVisitor *vis) override {vis->visit(this);return ;}
};class C : public Base {
public :void say() override {cout << "Class C" << endl;}void Accept(IVisitor *vis) override {vis->visit(this);return ;}
};
class D : public Base {
public :void say() override {cout << "Class D" << endl;}void Accept(IVisitor *vis) override {vis->visit(this);return ;}
};class E : public Base {
public :void say() override {cout << "Class E" << endl;}void Accept(IVisitor *vis) override {vis->visit(this);return ;}
};class calcVisitor : public Base::IVisitor {
public :calcVisitor(int &x) : x(x) {}void visit(A *obj) {x *= 2;}void visit(B *obj) {x -= 3;}void visit(C *obj) {x += 6;}void visit(D *obj) {x /= 3;}void visit(E *obj) {x -= 2;}int &x;
};int main() {srand(time(0));Base *p[5] = { nullptr };for (int i = 0; i < 5; i++) {switch (rand() % 5) {case 0 : p[i] = new A(); break;case 1 : p[i] = new B(); break;case 2 : p[i] = new C(); break;case 3 : p[i] = new D(); break;case 4 : p[i] = new E(); break;}}int x = 1;//依次处理p中的对象,不同的对象类型对x做不同的操作calcVisitor vis(x);for (int i = 0, pre = x; i < 5; i++) {p[i]->Accept(&vis);p[i]->say();cout << pre << " -> " << x << endl;pre = x;}cout << x << endl;return 0;
}

运行结果:

Class B
1 -> -2
Class C
-2 -> 4
Class D
4 -> 1
Class E
1 -> -1
Class D
-1 -> 0
0

每个访问者都是一个对象,访问者内部可以拥有成员属性。

总结:访问者模式实际上是完成的类型到功能之间的映射

这篇关于【C++】访问者模式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036936

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一