YOLOv8使用COCO评测,解决AssertionError: Results do not correspond to current coco set.

本文主要是介绍YOLOv8使用COCO评测,解决AssertionError: Results do not correspond to current coco set.,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLO评测指标和COCO评测指标还是有些区别的,通过数据表明YOLO评测指标要比COCO评测指标高2,3个点都是正常的。
跟着流程走吧!!

yolo设置

yolo.eval()评估的时候,需要设置save_json = True保存结果json文件

model = YOLO("weight/best.pt")
model.val(data="data.yaml",imgsz=640, save_json=True)

结果默认保存在runs/detect/val/predictions.json

Id转化

coco格式id是从0-n,一个序列。而yolo的id是文件名称,字符。需要借助标签文件进行映射,写到新文件中

def cover_pred_json_id(anno_json_path, pred_json_path):with open(anno_json_path, "r") as f:ann_json = json.load(f)with open(pred_json_path, "r") as f:pred_json = json.load(f)for pred_item in pred_json:img_id = pred_item["image_id"]ann_id = [ann_item["id"] for ann_item in ann_json["images"] if ann_item["file_name"][:-4] == img_id]try:pred_item["image_id"] = ann_id[0]except IndexError:print(img_id)out_json_path = os.path.join(os.path.dirname(pred_json_path),"newpred.json")with open(out_json_path, 'w') as file:json.dump(pred_json, file, indent=4)return out_json_path

评测

完整代码


def parse_opt():parser = argparse.ArgumentParser()parser.add_argument('--anno_json', type=str, default='datasets/annotations/instances_val2017.json', help='training model path')parser.add_argument('--pred_json', type=str, default='utils/json_files/newcocopred.json', help='data yaml path')return parser.parse_known_args()[0]def cover_pred_json_id(anno_json_path, pred_json_path):with open(anno_json_path, "r") as f:ann_json = json.load(f)with open(pred_json_path, "r") as f:pred_json = json.load(f)for pred_item in pred_json:img_id = pred_item["image_id"]ann_id = [ann_item["id"] for ann_item in ann_json["images"] if ann_item["file_name"][:-4] == img_id]try:pred_item["image_id"] = ann_id[0]except IndexError:print(img_id)out_json_path = os.path.join(os.path.dirname(pred_json_path),"newpred.json")with open(out_json_path, 'w') as file:json.dump(pred_json, file, indent=4)return out_json_pathif __name__ == '__main__':opt = parse_opt()anno_json = opt.anno_jsonpred_json = opt.pred_jsonpred_json = cover_pred_json_bbox(anno_json, pred_json) # cover yolo id to coco idanno = COCO(anno_json)  # init annotations apiprint(pred_json)pred = anno.loadRes(pred_json)  # init predictions apieval = COCOeval(anno, pred, 'bbox')eval.evaluate()eval.accumulate()eval.summarize()

如果不出意外的话,会正确打印结果:
coco result

错误

  1. 如果出现评测指标为0的时候,说明category_id都没对应上,coco是从1开始计算, 而yolo是0开始
    更改ultralytics/models/yolo/detect/val.py设置self.is_coco = True
    def init_metrics(self, model):"""Initialize evaluation metrics for YOLO."""val = self.data.get(self.args.split, "")  # validation pathself.is_coco = True # isinstance(val, str) and "coco" in val and val.endswith(f"{os.sep}val2017.txt")  # is COCOself.class_map = converter.coco80_to_coco91_class() if self.is_coco else list(range(1000))self.args.save_json |= self.is_coco  # run on final val if training COCOself.names = model.namesself.nc = len(model.names)self.metrics.names = self.namesself.metrics.plot = self.args.plotsself.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf)self.seen = 0self.jdict = []self.stats = dict(tp=[], conf=[], pred_cls=[], target_cls=[])
  1. 如果出现AssertionError: Results do not correspond to current coco set的错误通常是预测文件和标签中的id值不对应,这时候就要查看预测的文件中是不是少了或者多了哪个文件。

这篇关于YOLOv8使用COCO评测,解决AssertionError: Results do not correspond to current coco set.的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1036753

相关文章

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

PyQt6中QMainWindow组件的使用详解

《PyQt6中QMainWindow组件的使用详解》QMainWindow是PyQt6中用于构建桌面应用程序的基础组件,本文主要介绍了PyQt6中QMainWindow组件的使用,具有一定的参考价值,... 目录1. QMainWindow 组php件概述2. 使用 QMainWindow3. QMainW

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据

关于Mybatis和JDBC的使用及区别

《关于Mybatis和JDBC的使用及区别》:本文主要介绍关于Mybatis和JDBC的使用及区别,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、JDBC1.1、流程1.2、优缺点2、MyBATis2.1、执行流程2.2、使用2.3、实现方式1、XML配置文件

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Java资源管理和引用体系的使用详解

《Java资源管理和引用体系的使用详解》:本文主要介绍Java资源管理和引用体系的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Java的引用体系1、强引用 (Strong Reference)2、软引用 (Soft Reference)3、弱引用 (W

ubuntu系统使用官方操作命令升级Dify指南

《ubuntu系统使用官方操作命令升级Dify指南》Dify支持自动化执行、日志记录和结果管理,适用于数据处理、模型训练和部署等场景,今天我们就来看看ubuntu系统中使用官方操作命令升级Dify的方... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。