好书推荐-人工智能数学基础

2024-06-06 14:12

本文主要是介绍好书推荐-人工智能数学基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本书以零基础讲解为宗旨,面向学习数据科学与人工智能的读者,通俗地讲解每一个知识点,旨在帮助读者快速打下数学基础。
  

全书分为 4 篇,共 17 章。其中第 1 篇为数学知识基础篇,主要讲述了高等数学基础、微积分、泰勒公式与拉格朗日乘子法;第 2 篇为数学知识核心篇,主要讲述了线性代数基础、特征值与矩阵分解、概率论基础、随机变量与概率估计;第 3 篇为数学知识提高篇,主要讲述了数据科学的几种分布、核函数变换、熵与激活函数;第 4 篇为数学知识应用篇,主要讲述了回归分析、假设检验、相关分析、方差分析、聚类分析、贝叶斯分析等内容。
  本书适合准备从事数据科学与人工智能相关行业的读者。

加V ZZzhany527 回复【522】领取下载地址

目录  · · · · · ·

第1 章 人工智能与数学基础..........1
1.1 什么是人工智能............................ 2
1.2 人工智能的发展 ............................ 2
1.3 人工智能的应用 ............................ 4
1.4 学习人工智能需要哪些知识 ............. 5
1.5 为什么要学习数学 ......................... 7
1.6 本书包括的数学知识 ...................... 8
第 1 篇
基础篇................................................................. 9
第 2 章 高等数学基础 ................. 10
2.1 函数.......................................... 11
2.2 极限..........................................13
2.3 无穷小与无穷大...........................17
2.4 连续性与导数..............................19
2.5 偏导数...................................... 24
2.6 方向导数................................... 27
2.7 梯度......................................... 29
2.8 综合实例—梯度下降法求函数的最小值.......................................31
2.9 高手点拨................................... 35
2.10 习题....................................... 38
第 3 章 微积分..............................39
3.1 微积分的基本思想 ....................... 40
3.2 微积分的解释..............................41
3.3 定积分...................................... 42
3.4 定积分的性质............................. 44
3.5 牛顿—莱布尼茨公式.................... 45
3.6 综合实例—Python 中常用的定积分求解方法................................... 49
3.7 高手点拨....................................51
3.8 习题 ........................................ 52
第 4 章 泰勒公式与拉格朗日乘子法..............................53
4.1 泰勒公式出发点.......................... 54
4.2 一点一世界................................ 54
4.3 阶数和阶乘的作用....................... 59
4.4 麦克劳林展开式的应用..................61
4.5 拉格朗日乘子法.......................... 63
4.6 求解拉格朗日乘子法.................... 64
4.7 综合实例—编程模拟实现 sinx 的n 阶泰勒多项式并验证结果.................. 67
4.8 高手点拨 ................................... 68
4.9 习题 ......................................... 68
第2 篇
核心篇............................................................... 69
第 5 章 将研究对象形式化—线性代数基础 ..........................70
5.1 向量..........................................71
5.2 矩阵......................................... 73
5.3 矩阵和向量的创建....................... 77
5.4 特殊的矩阵................................ 85
5.5 矩阵基本操作..............................91
5.6 转置矩阵和逆矩阵....................... 96
5.7 行列式..................................... 101
5.8 矩阵的秩..................................104
5.9 内积与正交...............................108
5.10 综合实例—线性代数在实际问题中的应用 ....................................... 114
5.11 高手点拨 ................................ 121
5.12 习题......................................126
第 6 章 从数据中提取重要信息—特征值与矩阵分解..........127
6.1 特征值与特征向量 .....................128
6.2 特征空间..................................133
6.3 特征值分解...............................133
6.4 SVD 解决的问题.......................135
6.5 奇异值分解(SVD)..................136
6.6 综合实例 1—利用 SVD 对图像进行压缩 .......................................140
6.7 综合实例 2—利用 SVD 推荐商品 .......................................143
6.8 高手点拨..................................150
6.9 习题 .......................................154
第 7 章 描述统计规律 1—概率论基础................................155
7.1 随机事件及其概率 ......................156
7.2 条件概率.................................. 161
7.3 独立性.....................................162
7.4 随机变量..................................165
7.5 二维随机变量............................173
7.6 边缘分布..................................177
7.7 综合实例—概率的应用.............180
7.8 高手点拨.................................. 181
7.9 习题........................................184
第 8 章 描述统计规律 2—随机变量与概率估计........................185
8.1 随机变量的数字特征 ..................186
8.2 大数定律和中心极限定理.............193
8.3 数理统计基本概念......................199
8.4 最大似然估计........................... 203
8.5 最大后验估计........................... 206
8.6 综合实例 1—贝叶斯用户满意度预测 ...................................... 209
8.7 综合实例 2—最大似然法求解模型参数 .......................................217
8.8 高手点拨 ................................ 222
8.9 习题 ....................................... 224
第 3 篇
提高篇............................................................. 225
第 9 章 随机变量的几种分布...... 226
9.1 正态分布 ................................ 227
9.2 二项分布................................. 240
9.3 泊松分布................................. 250
9.4 均匀分布..................................261
9.5 卡方分布................................. 266
9.6 Beta 分布 .............................. 273
9.7 综合实例—估算棒球运动员的击中率 ...................................... 283
9.8 高手点拨 ................................ 285
9.9 习题 ...................................... 286
第 10 章 数据的空间变换—核函数变换............................. 287
10.1 相关知识简介 ......................... 288
10.2 核函数的引入 ......................... 290
10.3 核函数实例............................ 290
10.4 常用核函数.............................291
10.5 核函数的选择......................... 294
10.6 SVM 原理 ............................ 295
10.7 非线性 SVM 与核函数的引入.... 305
10.8 综合实例—利用 SVM 构建分类
问题......................................310
10.9 高手点拨................................315
10.10 习题 ................................... 322
第 11 章 熵与激活函数 .............. 323
11.1 熵和信息熵............................ 324
11.2 激活函数 ............................... 328
11.3 综合案例—分类算法中信息熵的应用...................................... 339
11.4 高手点拨 ................................341
11.5 习题 ..................................... 342
第4 篇
应用篇............................................................. 333
第 12 章 假设检验 ..................... 344
12.1 假设检验的基本概念................. 345
12.2 Z 检验 ...................................351
12.3 t 检验 ................................... 353
12.4 卡方检验............................... 358
12.5 假设检验中的两类错误 ..............361
12.6 综合实例 1—体检数据中的假设检验问题..................................... 363
12.7 综合实例 2—种族对求职是否有影响..................................... 369
12.8 高手点拨............................... 372
12.9 习题..................................... 374
13 章 相关分析...................... 375
13.1 相关分析概述.......................... 376
13.2 皮尔森相关系数....................... 378
13.3 相关系数的计算与假设检验........ 379
13.4 斯皮尔曼等级相关.................... 385
13.5 肯德尔系数............................. 392
13.6 质量相关分析.......................... 396
13.7 品质相关分析.......................... 400
13.8 偏相关与复相关....................... 403
13.9 综合实例—相关系数计算........ 405
13.10 高手点拨.............................. 407
13.11 习题..................................... 408
第 14 章 回归分析......................409
14.1 回归分析概述...........................410
14.2 回归方程推导及应用..................412
14.3 回归直线拟合优度.....................416
14.4 线性回归的模型检验..................417
14.5 利用回归直线进行估计和预测......419
14.6 多元与曲线回归问题..................421
14.7 Python 工具包....................... 426
14.8 综合实例—个人医疗保费预测任务...................................... 432
14.9 高手点拨................................ 444
14.10 习题..................................... 446
第 15 章 方差分析......................449
15.1 方差分析概述.......................... 448
15.2 方差的比较............................. 450
15.3 方差分析.................................451
15.4 综合实例—连锁餐饮用户评级分析...................................... 460
15.5 高手点拨................................ 464
15.6 习题...................................... 466
第 16 章 聚类分析......................469
16.1 聚类分析概述.......................... 468
16.2 层次聚类................................ 470
16.3 K-Means 聚类...................... 484
16.4 DBSCAN 聚类....................... 494
16.5 综合实例—聚类分析.............. 499
16.6 高手点拨.................................512
16.7 习题.......................................512
第 17 章 贝叶斯分析....................513
17.1 贝叶斯分析概述........................514
17.2 MCMC 概述.......................... 520
17.3 MCMC 采样 ......................... 525
17.4 Gibbs 采样........................... 529
17.5 综合实例—利用 PyMC3 实现随机模拟样本分布......................... 532
17.6 高手点拨............................... 539
17.7 习题..................................... 540

这篇关于好书推荐-人工智能数学基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036335

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

Java日期类详解(最新推荐)

《Java日期类详解(最新推荐)》早期版本主要使用java.util.Date、java.util.Calendar等类,Java8及以后引入了新的日期和时间API(JSR310),包含在ja... 目录旧的日期时间API新的日期时间 API(Java 8+)获取时间戳时间计算与其他日期时间类型的转换Dur

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

MySQL 存储引擎 MyISAM详解(最新推荐)

《MySQL存储引擎MyISAM详解(最新推荐)》使用MyISAM存储引擎的表占用空间很小,但是由于使用表级锁定,所以限制了读/写操作的性能,通常用于中小型的Web应用和数据仓库配置中的只读或主要... 目录mysql 5.5 之前默认的存储引擎️‍一、MyISAM 存储引擎的特性️‍二、MyISAM 的主

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

C++ HTTP框架推荐(特点及优势)

《C++HTTP框架推荐(特点及优势)》:本文主要介绍C++HTTP框架推荐的相关资料,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Crow2. Drogon3. Pistache4. cpp-httplib5. Beast (Boos

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Python多进程、多线程、协程典型示例解析(最新推荐)

《Python多进程、多线程、协程典型示例解析(最新推荐)》:本文主要介绍Python多进程、多线程、协程典型示例解析(最新推荐),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 目录一、multiprocessing(多进程)1. 模块简介2. 案例详解:并行计算平方和3. 实现逻