生命在于学习——Python人工智能原理(3.2)

2024-06-06 12:36

本文主要是介绍生命在于学习——Python人工智能原理(3.2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

三、深度学习

(二)人工神经网络

人工神经网络是模仿人类大脑神经系统工作原理所创建的数学模型,有并行的分布处理能力、高容错性和自我学习等特征。

1、感知器

感知器由Frank Roseblatt于1957年提出,是一种广泛使用的线性分类器,感知器可谓是最简单的人工神经网络,只有一个神经元。
感知器是对生物神经元的简单数学模拟,有与生物神经元相对于的部件,如权重对应突触,偏置对应阈值,激活函数对应细胞体,输出为+1或-1。

2、神经网络模型

下图是神经网络的结构模型图,最左边的层是输入层,最右边的层是输出层,输入层和输出层之间的层叫做隐藏层,包含多个隐藏层的神经网络叫做深度神经网络。
对于拟合任何一个函数而言,浅层神经网络浅而宽,需要大量神经元,而深层神经网络深而窄,需要更多的层和较少的神经元。一般来说深层神经网络参数更少,更节省资源,但深层神经网络并不好训练,需要大量数据和很好的技巧才能训练出好的神经网络。
在这里插入图片描述

3、反向传播算法

学习规则可以用来修改神经网络的权重和偏置值,其目的是训练网络,更好的拟合特定任务的需求。常见的学习规则有Hebb学习规则、Delta算法及反向传播算法(BP)。
BP算法是人工神经网络较常采用的学习方法,其基本思想是逐一由样本集中的样本(Xk,Yk)计算出实际输出Ok和误差测度Ep,对w1,w2,…,wn权值做调整,重复这个循环,直到误差降至最低。
用输出层的误差调整输出层的权值矩阵,并因此误差估计输出层的直接前导误差,再用输出层直接前导层误差估计更前一层的误差,如此获得所有其他各层的误差估计,并用这些估计实现对权值矩阵的修改,形成将输出端出现的误差沿着与输入信号相反的方向逐级向输入端传递的链式求解过程。
BP算法学习过程应用到深度学习中分为两个子过程。输入数据正向传递子过程和误差数据方向传递子过程(正向传播求误差,反向传播求偏导)。
下面以三层神经网络为例,详细说明BP算法的原理及推导求解过程。

(1)正向传播求误差

网络分为三层,设输入层到隐藏层的权值为wji(0),隐藏层到输出层的权值为wji(1),权重和偏置的初始值一般根据实际情况采用随机值或经验值。输入层神经元个数为n,隐藏层神经元个数为m,输出层为1采用sigmod激活函数。
输入层的输入向量X(x1,x2,…,xn),隐藏层的输出向量H=(h1,h2,…,hm),有(式子1):
在这里插入图片描述
其中,netj(0)为未激活之前的神经网络计算输出,wji(0)为权值,bj(0)为节点hj的偏置值,f()为激活函数,θj(0)是阈值,用来改变神经元的活性,只有当神经元接收的信息达到阈值时才会被激活,同样,输出层向量O=(o1,o2,…,xl),有(式子2):
在这里插入图片描述

(2)反向传播求偏导

设d为期望输出,o为实际输出,E为损失函数(又称误差信号),则损失函数定义为(式子3):
在这里插入图片描述
dk是输出层第k个单元的期望输出,ok是输出层第k个单元的实际输出。将损失函数E展开到隐藏层,即把式子2带入到式子3中,可以得到(式子4):
在这里插入图片描述
再把损失函数E展开到输入层,即把式子1带入到式子4中,可以得到(式子5):
在这里插入图片描述
从式子5中可以看出,损失函数E是关于权值和偏置的函数,要使E最小,就要沿着梯度的反方向不断修改和调整权值和偏置。对于wkj(1)来说,可以选择任意初始点wki(1),从wki(1)沿着梯度下降的方向新进,所以取(式子6):
在这里插入图片描述
其中,η是学习率,取值0-1,可以用于避免陷入求解空间的局部最优值。同理可得(式子7):
在这里插入图片描述
对Δwki(1)和Δbk(1)进一步展开,可以得(式子8):
在这里插入图片描述
对隐藏层的Δwji(0)和Δbj(0)进一步展开,可以得(式子9):
在这里插入图片描述
对输出层和隐藏层各定义一个误差权值信号,令(式子10):
在这里插入图片描述
则(式子11)
在这里插入图片描述

(式子12)
在这里插入图片描述
ξko和ξjy又可以展开为(式子13):
在这里插入图片描述
由此,根据式子3,损失函数对o和h求偏导可得(式子14):
在这里插入图片描述
其中,由sigmod函数性质可知:
在这里插入图片描述
并将式子14带入式子13可得(式子15):
在这里插入图片描述
将式子15带入到式子11和式子12中,即可求得BP算法的权值和偏置更新计算公式。

这篇关于生命在于学习——Python人工智能原理(3.2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036127

相关文章

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财