ioctl.h 分析

2024-06-06 09:58
文章标签 分析 ioctl

本文主要是介绍ioctl.h 分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ioctl.h 分析





我自己画了个解析图。。。不要嫌弃丑啊。。。哈哈

 
type

The magic number. Just choose one number (after consultingioctl-number.txt ) and use it throughout the driver. This field is eight bits wide (_IOC_TYPEBITS).


number.

          The ordinal (sequential) number. It’s eight bits ( _IOC_NRBITS) wide.


direction

The direction of data transfer,if the particular command involves a data transfer. The possible values are _IOC_NONE (no data transfer), _IOC_READ, _IOC_WRITE, and _IOC_READ|_IOC_WRITE(data is transferred both ways). Data transfer is seen from the application’s point of view; _IOC_READ means reading from the device, so the driver must write to user space. Note that the field is a bitmask,so _IOC_ READ and _IOC_WRITE can be extracted using a logical AND operation.

size

The size of user data involved.The width of this field is architecture dependent, but is usually 13 or 14 bits.You can find its value  for your specific architecture in the macro _IOC_SIZEBITS. It’s not mandatory that you use the size field—the kernel does not check it—but it is a goodidea.Proper use of this field can help detect user-space programming errors and enable you to implement backward compatibility if you ever need to change the size of the relevant data item. If you need larger data structures, however,you can just ignore the size field. We’ll see how this field is used soon.


#ifndef _UAPI_ASM_GENERIC_IOCTL_H
#define _UAPI_ASM_GENERIC_IOCTL_H/* ioctl command encoding: 32 bits total, command in lower 16 bits,* size of the parameter structure in the lower 14 bits of the* upper 16 bits.* Encoding the size of the parameter structure in the ioctl request* is useful for catching programs compiled with old versions* and to avoid overwriting user space outside the user buffer area.* The highest 2 bits are reserved for indicating the ``access mode''.* NOTE: This limits the max parameter size to 16kB -1 !*//** The following is for compatibility across the various Linux* platforms.  The generic ioctl numbering scheme doesn't really enforce* a type field.  De facto, however, the top 8 bits of the lower 16* bits are indeed used as a type field, so we might just as well make* this explicit here.  Please be sure to use the decoding macros* below from now on.*/
#define _IOC_NRBITS	8
#define _IOC_TYPEBITS	8/** Let any architecture override either of the following before* including this file.*/#ifndef _IOC_SIZEBITS
# define _IOC_SIZEBITS	14
#endif#ifndef _IOC_DIRBITS
# define _IOC_DIRBITS	2
#endif#define _IOC_NRMASK	((1 << _IOC_NRBITS)-1)           //0xff
#define _IOC_TYPEMASK	((1 << _IOC_TYPEBITS)-1)     //0xff
#define _IOC_SIZEMASK	((1 << _IOC_SIZEBITS)-1)     //0x3fff
#define _IOC_DIRMASK	((1 << _IOC_DIRBITS)-1)      //0x3/*这部分是NR TYPE SIZE DIR 段在32bit数据中储存位置相对于起始0位置的偏移量*/
#define _IOC_NRSHIFT	0
#define _IOC_TYPESHIFT	(_IOC_NRSHIFT+_IOC_NRBITS)   //0x8
#define _IOC_SIZESHIFT	(_IOC_TYPESHIFT+_IOC_TYPEBITS)//0x10
#define _IOC_DIRSHIFT	(_IOC_SIZESHIFT+_IOC_SIZEBITS)//0x1E/** Direction bits, which any architecture can choose to override* before including this file.*/
/*io 读写权限宏*/
#ifndef _IOC_NONE
# define _IOC_NONE	0U
#endif#ifndef _IOC_WRITE
# define _IOC_WRITE	1U
#endif#ifndef _IOC_READ
# define _IOC_READ	2U
#endif/*_IOC 适用于将dir, type nr size 这四个信息合成到一个32bit的数据中*/
#define _IOC(dir,type,nr,size) \(((dir)  << _IOC_DIRSHIFT) | \((type) << _IOC_TYPESHIFT) | \((nr)   << _IOC_NRSHIFT) | \((size) << _IOC_SIZESHIFT))#ifndef __KERNEL__
#define _IOC_TYPECHECK(t) (sizeof(t))
#endif/* used to create numbers */
#define _IO(type,nr)		_IOC(_IOC_NONE,(type),(nr),0)
#define _IOR(type,nr,size)	_IOC(_IOC_READ,(type),(nr),(_IOC_TYPECHECK(size)))
#define _IOW(type,nr,size)	_IOC(_IOC_WRITE,(type),(nr),(_IOC_TYPECHECK(size)))
#define _IOWR(type,nr,size)	_IOC(_IOC_READ|_IOC_WRITE,(type),(nr),(_IOC_TYPECHECK(size)))/*一下三个BAD结尾的宏定义我也没看明白为什么最后一个参数是sizeof(size) 就得跟一个BAD*/
#define _IOR_BAD(type,nr,size)	_IOC(_IOC_READ,(type),(nr),sizeof(size))
#define _IOW_BAD(type,nr,size)	_IOC(_IOC_WRITE,(type),(nr),sizeof(size))
#define _IOWR_BAD(type,nr,size)	_IOC(_IOC_READ|_IOC_WRITE,(type),(nr),sizeof(size))/* used to decode ioctl numbers.. *//*从32bit的数据中解码出DIR TYPE NR SIZE,很简单没啥讲的*/
#define _IOC_DIR(nr)		(((nr) >> _IOC_DIRSHIFT) & _IOC_DIRMASK)
#define _IOC_TYPE(nr)		(((nr) >> _IOC_TYPESHIFT) & _IOC_TYPEMASK)
#define _IOC_NR(nr)		(((nr) >> _IOC_NRSHIFT) & _IOC_NRMASK)
#define _IOC_SIZE(nr)		(((nr) >> _IOC_SIZESHIFT) & _IOC_SIZEMASK)/* ...and for the drivers/sound files... */#define IOC_IN		(_IOC_WRITE << _IOC_DIRSHIFT)
#define IOC_OUT		(_IOC_READ << _IOC_DIRSHIFT)
#define IOC_INOUT	((_IOC_WRITE|_IOC_READ) << _IOC_DIRSHIFT)
#define IOCSIZE_MASK	(_IOC_SIZEMASK << _IOC_SIZESHIFT)
#define IOCSIZE_SHIFT	(_IOC_SIZESHIFT)#endif /* _UAPI_ASM_GENERIC_IOCTL_H */








这篇关于ioctl.h 分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035782

相关文章

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺