数据结构——图的链表实现(邻接表表示法)

2024-06-06 09:38

本文主要是介绍数据结构——图的链表实现(邻接表表示法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图的链表实现


之前实现了图的数组实现

http://blog.csdn.net/cinmyheart/article/details/41370465


下图仅作示意性说明,和测试数据有点区别,测试数据还是用的原来数组实现时的测试数据,这并不影响图的数据结构的表示(其实我就是懒得再做一遍原始数据了。。。哈哈)



现对图进行抽象,对于整个图,我用了结构体struct graph,图中有节点,那么节点我用struct vertex 进行抽象,至于struct vertex adjacent[0]这个技巧是我常用的伎俩

不熟悉或者不知道的话可以看这里

http://blog.csdn.net/cinmyheart/article/details/28985843


         这里我想强调一下的就是,权衡了一下,在struct vertex内部我使用了两个指针,一个end 一个next,实质上,看代码就知道,只有头节点会同时用到end和next两个指针,end的存在是为了最快速的跳转指向到链表末尾,然而,除开头节点外,其他节点的end是没有意义的,代码里面其他节点也没有使用end指针。这里是一种权衡考虑,为了最快的跳转到链表末尾,我选择了牺牲一点内存(用来储存end指针的).


/************************************************************
code file	: graph.h
code writer	: EOF
code date	: 2014.11.22
e-mail		: jasonleaster@gmail.comcode description:This file is a header file for out test program.
We abstract the data structure -- Graph here. And we also
declare some useful API to construct out naive graph :)************************************************************/#ifndef _GRAPH_LIST_H
#define _GRAPH_LIST_H#include <stdio.h>#include <stdlib.h>#define CONNECTED    1#define DISCONNECTED 0#define SUCCESS  0#define FAILED  -1struct vertex{int value;struct vertex* next;struct vertex* end;};struct graph{int num_vertex;int num_edge;struct vertex adjacent[0];};struct graph* init_graph(int vertex,int edge);void   release_graph(struct graph* p_graph);int add_edge(struct graph* p_graph,char from_v,char to_v);int print_graph(struct graph* p_graph);#endif

对于数据数据结构进行初始化

/************************************************************
code file	: init_graph.c
code writer	: EOF
code date	: 2014.11.22
e-mail		: jasonleaster@gmail.comcode description:This function is used for initializing the graph
with inputed parameter @vertex and @edge.************************************************************/
#include "graph_list.h"struct graph* init_graph(int num_vertex,int num_edge)
{if(num_vertex <= 0 || num_edge <= 0){return NULL;}struct graph* p_graph = NULL;p_graph = (struct graph*)malloc(sizeof(struct graph) +\num_vertex*sizeof(struct vertex));if(!p_graph){printf("malloc failed in function %s()\n",__FUNCTION__);return NULL;}p_graph->num_vertex = num_vertex;p_graph->num_edge   = num_edge;int temp = 0;//initialize the adjacent relationshipfor(temp = 0;temp < num_vertex;temp++){p_graph->adjacent[temp].value = temp;p_graph->adjacent[temp].next  = NULL;p_graph->adjacent[temp].end   = NULL;}return p_graph;
}

这里开始真正的建立图节点间的链接关系


      这里注意到,由于图是双向连同的图,而不是单向的,因此建立A-B关系的时候还要建立B-A关系。

再者,这里我用了三个if 判断语句,细心者会发现,如果前两个条件即使不满足,那么经过前两个if过程的处理,不管怎样,第三个if的条件都为真

       而我还是用了if,是为了提醒自己和viewer,当前两个if任意不满足时,进入第三个if内部的时候,adjacent[to/from] .end->next 这个指针实质上是指向此时end本身的,即此时的p_to/from_v,后面会紧跟着有个p_to/from_v->next = NULL,因此不会影响最后节点指向NULL的特性。



/************************************************************
code file	: add_edge.c
code writer	: EOF
code date	: 2014.11.22
e-mail		: jasonleaster@gmail.comcode description:This function will help us to add a new connection
between different vertex which is in the graph.*************************************************************/
#include "graph_list.h"int add_edge(struct graph* p_graph,char from_v,char to_v)
{if(!p_graph || from_v < 0 || to_v < 0){return FAILED;}struct vertex* p_to_v    = (struct vertex*)malloc(sizeof(struct vertex));struct vertex* p_from_v  = (struct vertex*)malloc(sizeof(struct vertex));if(!p_to_v || !p_from_v){printf("malloc failed in function %s()\n",__FUNCTION__);return FAILED;		}if(!(p_graph->adjacent[from_v].end)){p_graph->adjacent[from_v].next  = p_to_v;p_graph->adjacent[from_v].end   = p_to_v;p_to_v->next  = NULL;p_to_v->value = to_v;}if(!(p_graph->adjacent[to_v].end)){p_graph->adjacent[to_v].next  = p_from_v;p_graph->adjacent[to_v].end   = p_from_v;p_from_v->next  = NULL;p_from_v->value = from_v;}if(p_graph->adjacent[from_v].end && p_graph->adjacent[to_v].end){p_graph->adjacent[from_v].end->next = p_to_v;p_graph->adjacent[from_v].end       = p_to_v;//update the new end node.p_to_v->next  = NULL;p_to_v->value = to_v;p_graph->adjacent[to_v].end->next = p_from_v;p_graph->adjacent[to_v].end       = p_from_v;//update the new end node.p_from_v->next  = NULL;p_from_v->value = from_v;}return SUCCESS;
}



链表实现时候,图的释放会有点不“优雅”。

节点在内存中离散的分布导致释放时要一个个释放。如果是数组实现的话,一次性就OK了

/************************************************************
code file	: release_graph.c
code writer	: EOF
code date	: 2014.11.22
e-mail		: jasonleaster@gmail.comcode description:It's easy and convenient for us to call this API once
and free all the graph.*************************************************************/
#include "graph_list.h"void release_graph(struct graph* p_graph)
{if(!p_graph){return ;}int temp = 0;int num_vertex = p_graph->num_vertex;struct vertex* p_temp = NULL;for(temp = 0;temp < num_vertex;temp++){if(p_graph->adjacent[temp].next){p_temp = (p_graph->adjacent[temp].next->next);while(p_temp){free(p_graph->adjacent[temp].next);p_graph->adjacent[temp].next = p_temp;p_temp = p_temp->next;}free(p_graph->adjacent[temp].next);}}free(p_graph);
}


打印图节点间的关系


/************************************************************
code file	: print_graph.c
code writer	: EOF
code date	: 2014.11.22
e-mail		: jasonleaster@gmail.comcode description:This function will print out the connection of graph
which @p_graph point to.************************************************************/#include "graph_list.h"int print_graph(struct graph* p_graph)
{if(!p_graph){return FAILED;}int from_v = 0;int to_v = 0;int num_vertex = p_graph->num_vertex;struct vertex* p_vertex = NULL;for(from_v = 0;from_v < num_vertex;from_v++){	p_vertex = &(p_graph->adjacent[from_v]);while(p_vertex){printf("\t%d",p_vertex->value);p_vertex = p_vertex->next;}printf("\n");}return SUCCESS;
}


测试主程序

/****************************************************************
code file	: test_graph.c
code writer	: EOF
code date	: 2014.11.22
e-mail		: jasonleaster@gmail.comcode description:Here , we use this program to call some API which would 
construct a ADT--graph and test it.*****************************************************************/
#include <stdio.h>
#include "graph_list.h"int main()
{struct graph* p_graph = NULL;FILE* fp = fopen("./text.txt","r+");if(!fp){printf("fopen() failed!\n");return 0;}int ret    = 0;int vertex = 0;int edge   = 0;int from_v = 0;int to_v   = 0;fscanf(fp,"%d",&vertex);fscanf(fp,"%d",&edge);p_graph = init_graph(vertex,edge);int temp = 0;for(temp;temp < edge;temp++){/***	I think it's necessary to check the returned value** of scanf() family.*/ret = fscanf(fp,"%d %d",&from_v,&to_v);if(ret != 2){break;}add_edge(p_graph,from_v,to_v);}print_graph(p_graph);release_graph(p_graph);fclose(fp);return 0;
}
测试文本 text.txt
13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

测试结果:







这篇关于数据结构——图的链表实现(邻接表表示法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035742

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统