通过反汇编一个简单的C程序,分析汇编代码理解计算机是如何工作的

2024-06-06 09:32

本文主要是介绍通过反汇编一个简单的C程序,分析汇编代码理解计算机是如何工作的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

刘子健 

原创作品转载请注明出处

《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000




对一下代码进行反汇编分析:

int g(int x)
{return x + 42;
}int f(int x)
{return g(x);
}int main(void)
{return f(42) + 42;
}


我的主机是64位的Linux,所以使用的反汇编代码也是64-bits的.

	.file	"2015_03_01.c".text.globl	g.type	g, @function
g:
.LFB0:.cfi_startprocpushq	%rbp.cfi_def_cfa_offset 16.cfi_offset 6, -16movq	%rsp, %rbp.cfi_def_cfa_register 6movl	%edi, -4(%rbp)movl	-4(%rbp), %eaxaddl	$42, %eaxpopq	%rbp.cfi_def_cfa 7, 8ret.cfi_endproc
.LFE0:.size	g, .-g.globl	f.type	f, @function
f:
.LFB1:.cfi_startprocpushq	%rbp.cfi_def_cfa_offset 16.cfi_offset 6, -16movq	%rsp, %rbp.cfi_def_cfa_register 6subq	$8, %rspmovl	%edi, -4(%rbp)movl	-4(%rbp), %eaxmovl	%eax, %edicall	gleave.cfi_def_cfa 7, 8ret.cfi_endproc
.LFE1:.size	f, .-f.globl	main.type	main, @function
main:
.LFB2:.cfi_startprocpushq	%rbp.cfi_def_cfa_offset 16.cfi_offset 6, -16movq	%rsp, %rbp.cfi_def_cfa_register 6movl	$42, %edicall	faddl	$42, %eaxpopq	%rbp.cfi_def_cfa 7, 8ret.cfi_endproc
.LFE2:.size	main, .-main.ident	"GCC: (Ubuntu 4.8.2-19ubuntu1) 4.8.2"

反汇编得到的代码里面有很多提示信息,提示信息以 . 开头,程序执行时这些提示信息不是指令,我们在这个反汇编样例里面可以精简代码,把这些提示信息删除.有些信息不能剔除,这些信息是编译器必须的,否则你过不了编译链接.

下面是精简后的反汇编代码:以下代码可以通过 gcc ./2015_03_01.s -o ./a.out

	.text.globl	g.type	g, @function
g:pushq	%rbpmovq	%rsp, %rbpmovl	%edi, -4(%rbp)movl	-4(%rbp), %eaxaddl	$42, %eaxpopq	%rbpret.size	g, .-g.globl	f.type	f, @function
f:pushq	%rbpmovq	%rsp, %rbpsubq	$8, %rspmovl	%edi, -4(%rbp)movl	-4(%rbp), %eaxmovl	%eax, %edicall	gleaveret.size	f, .-f.globl	main.type	main, @function
main:pushq	%rbpmovq	%rsp, %rbpmovl	$42, %edicall	faddl	$42, %eaxpopq	%rbpret.size	main, .-main



关于基本汇编指令的分析,我之前有笔记,可以去看这里:

http://blog.csdn.net/cinmyheart/article/details/25558911

我们这里着重分析反汇编代码:

g: , f:, main: 均用来指示函数的入口.

对于函数main.

首先压栈,pushq 指令将rsp寄存器的值减去一个指针长度,在64-bits机器上即8byte,然后将 rbp寄存器的值写入到rsp指向的地址处.

movq %rsp, %ebp指令则将rsp寄存器的值赋值给rbp寄存器.这样一来,属于main函数的栈区域便构建好了.

接着movl 把立即数42赋值给寄存器edi, 然后call指令调用函数f.函数f的返回值会储存在eax寄存器中,等待f调用完之后,会把eax寄存器的值和立即数42相加,并储存在eax寄存器中.最后把rbp寄存器处的值弹栈.然后ret指令返回.

---------------------------------------------------------------------------------

call  f 

指令就相当于

push %eip #把当前指令指针寄存器压栈,然后跳转到f处
jump f

---------------------------------------------------------------------------------

ret 指令就相当于

popl %eip  #把当前esp寄存器指向地址处的值,赋值给eip

然后把esp寄存器的值减去一个指针长度,即8-byte

---------------------------------------------------------------------------------



看看函数f都干了神马.

还是和上面介绍main函数一样的"老规矩",构建函数f的堆栈,

pushq %rbp

movq %rsp, %rbp

接着使用subq $8, %rsp把rsp寄存器的值减去8.

接着把edi寄存器的值赋值给rbp寄存器指向地址处减去4byte的地址处

紧接着,把这个地址处的值赋值给eax寄存器.

把eax寄存器的值又赋值给edi寄存器(其实我想说,这不是吓折腾么...这编译器啊..这期间edi寄存器的值没变)



然后调用函数g

一句话概括就是把edi寄存器的值加上42赋值给eax寄存器,然后返回.(不改变edi寄存器的值)




阐明自己对“计算机是如何工作的”理解:

对于规范化后的程序指令,逐一的对程序指令进行"解释处理".不同的CPU,可能有不同的汇编指令集,比方说Intel -- X86 /X64平台,ARM平台,PowerPC等等,但是他们最基本的的思想都是近似的--冯诺依曼体系结构.

数字计算机的数制采用二进制;计算机应该按照程序顺序执行


-----------------------






这篇关于通过反汇编一个简单的C程序,分析汇编代码理解计算机是如何工作的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035725

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

Java中使用 @Builder 注解的简单示例

《Java中使用@Builder注解的简单示例》@Builder简化构建但存在复杂性,需配合其他注解,导致可变性、抽象类型处理难题,链式编程非最佳实践,适合长期对象,避免与@Data混用,改用@G... 目录一、案例二、不足之处大多数同学使用 @Builder 无非就是为了链式编程,然而 @Builder

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java