【深度学习笔记2.2.2】AlexNet训练mnist

2024-06-06 05:58

本文主要是介绍【深度学习笔记2.2.2】AlexNet训练mnist,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验1:AlexNet Tensorflow 实现

代码示例如下(详见文献[2]AlexNet1.py):

import numpy as np
import cv2
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as pltdatapath = '/home/pathto/res/MNIST_data'
mnist_data_set = input_data.read_data_sets(datapath, validation_size=0, one_hot=True)def image_shape_scale(batch_xs):images = np.reshape(batch_xs, [batch_xs.shape[0], 28, 28])imlist = [][imlist.append(cv2.resize(img, (227, 227))) for img in images]images = np.array(imlist)# cv2.imwrite('scale1.jpg', images[0]*200)# cv2.imwrite('scale2.jpg', images[1]*200)# batch_xs = np.reshape(images, [batch_xs.shape[0], 227 * 227 * input_image_channel])batch_xs = np.reshape(images, [batch_xs.shape[0], 227, 227, input_image_channel])return batch_xsinput_image_channel = 1
learning_rate = 1e-4
training_epoch = 50
batch_size = 200
n_classes = 10
n_fc1 = 6*6*256
n_fc2 = 4096
n_fc3 = 4096
dropout_rate = 0.5X = tf.placeholder(tf.float32, [None, 227, 227, input_image_channel])
y = tf.placeholder(tf.float32, [None, n_classes])W_conv = {'conv1': tf.Variable(tf.truncated_normal([11, 11, input_image_channel, 96])),'conv2': tf.Variable(tf.truncated_normal([5, 5, 96, 256])),'conv3': tf.Variable(tf.truncated_normal([3, 3, 256, 384])),'conv4': tf.Variable(tf.truncated_normal([3, 3, 384, 384])),'conv5': tf.Variable(tf.truncated_normal([3, 3, 384, 256])),'fc1': tf.Variable(tf.truncated_normal([n_fc1, n_fc2])),'fc2': tf.Variable(tf.truncated_normal([n_fc2, n_fc3])),'output': tf.Variable(tf.truncated_normal([n_fc3, n_classes]))
}b_conv = {'conv1': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[96])),'conv2': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[256])),'conv3': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[384])),'conv4': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[384])),'conv5': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[256])),'fc1': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[n_fc2])),'fc2': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[n_fc3])),'output': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[n_classes]))
}X_image = tf.reshape(X, [-1, 227, 227, input_image_channel])# 卷积层1
conv1 = tf.nn.conv2d(X_image, W_conv['conv1'], strides=[1, 4, 4, 1], padding='VALID')
conv1 = tf.nn.bias_add(conv1, b_conv['conv1'])
conv1 = tf.nn.relu(conv1)
conv1 = tf.nn.local_response_normalization(conv1, depth_radius=2, alpha=2e-05, beta=0.75, bias=1.0)
# 此时 conv1.shape = [-1, 55, 55, 96]# 池化层1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')
# pool1.shape = [-1, 27, 27, 96]# 卷积层2
conv2 = tf.nn.conv2d(pool1, W_conv['conv2'], strides=[1, 1, 1, 1], padding='SAME')
conv2 = tf.nn.bias_add(conv2, b_conv['conv2'])
conv2 = tf.nn.relu(conv2)
conv2 = tf.nn.local_response_normalization(conv2, depth_radius=2, alpha=2e-05, beta=0.75, bias=1.0)
# 此时 conv2.shape = [-1, 27, 27, 256]# 池化层2
pool2 = tf.nn.max_pool(conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')
# 此时 pool2.shape = [-1, 13, 13, 256]# 卷积层3
conv3 = tf.nn.conv2d(pool2, W_conv['conv3'], strides=[1, 1, 1, 1], padding='SAME')
conv3 = tf.nn.bias_add(conv3, b_conv['conv3'])
conv3 = tf.nn.relu(conv3)
# 此时 conv3.shape = [-1, 13, 13, 384]# 卷积层4
conv4 = tf.nn.conv2d(conv3, W_conv['conv4'], strides=[1, 1, 1, 1], padding='SAME')
conv4 = tf.nn.bias_add(conv4, b_conv['conv4'])
conv4 = tf.nn.relu(conv4)
# 此时 conv4.shape = [-1, 13, 13, 384]# 卷积层5
conv5 = tf.nn.conv2d(conv4, W_conv['conv5'], strides=[1, 1, 1, 1], padding='SAME')
conv5 = tf.nn.bias_add(conv5, b_conv['conv5'])
conv5 = tf.nn.relu(conv5)
# 此时 conv5.shape = [-1, 13, 13, 256]# 池化层5
pool5 = tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')
# 此时pool5.shape = [-1, 6, 6, 256]# 全连接层1
reshape = tf.reshape(pool5, [-1, n_fc1])
# 此时reshape.shape = [-1, 9216]
fc1 = tf.add(tf.matmul(reshape, W_conv['fc1']), b_conv['fc1'])
fc1 = tf.nn.relu(fc1)
fc1 = tf.nn.dropout(fc1, dropout_rate)
# 此时fc1.shape = [-1, 4096]# 全连接层2
fc2 = tf.add(tf.matmul(fc1, W_conv['fc2']), b_conv['fc2'])
fc2 = tf.nn.relu(fc2)
fc2 = tf.nn.dropout(fc2, dropout_rate)
# 此时fc2.shape = [-1, 4096]# 输出层
output = tf.add(tf.matmul(fc2, W_conv['output']), b_conv['output'])
# 此时output.shape = [-1. 10]# 定义交叉熵损失函数(有两种方法):
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 方法1: 自己实现交叉熵
y_output = tf.nn.softmax(output)  # 对网络最后一层的输出做softmax, 这通常是求取输出属于某一类的概率
cross_entropy = -tf.reduce_sum(y * tf.log(y_output))  # 用softmax的输出向量和样本的实际标签做一个交叉熵.
loss = tf.reduce_mean(cross_entropy)  # 对交叉熵求均值就是loss
# loss = -tf.reduce_mean(y * tf.log(y_output))  # 交叉熵本应是一个向量,但tf.reduce_mean可以直接求取tensor所有维度的和,所以这里可以用tf.reduce_mean一句代替上述三步。# 方法2:使用tensorflow自带的tf.nn.softmax_cross_entropy_with_logits函数实现交叉熵
# loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=y))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~train_step = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss)# 评估模型
correct_pred = tf.equal(tf.argmax(y_output, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))init = tf.global_variables_initializer()loss_buf = []
accuracy_buf = []
with tf.device("/gpu:0"):# with tf.Graph().as_default():gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True, log_device_placement=True)# config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)with tf.Session(config=config) as sess:sess.run(init)total_batch = mnist_data_set.train.num_examples // batch_sizefor i in range(training_epoch):for iteration in range(total_batch):batch_xs, batch_ys = mnist_data_set.train.next_batch(batch_size)batch_xs = image_shape_scale(batch_xs)sess.run(train_step, feed_dict={X: batch_xs, y: batch_ys})test_accuracy = sess.run(accuracy, feed_dict={X: batch_xs, y: batch_ys})print("step {}, iteration {}, training accuracy {}".format(i, iteration, test_accuracy))batch_xs, batch_ys = mnist_data_set.test.images[0:1000, :], mnist_data_set.test.labels[0:1000, :]batch_xs = image_shape_scale(batch_xs)loss_val = sess.run(loss, feed_dict={X: batch_xs, y: batch_ys})test_accuracy = sess.run(accuracy, feed_dict={X: batch_xs, y: batch_ys})loss_buf.append(loss_val)accuracy_buf.append(test_accuracy)print("step {}, loss {}, testing accuracy {}".format(i, loss_val, test_accuracy))# 画出准确率曲线
accuracy_ndarray = np.array(accuracy_buf)
accuracy_size = np.arange(len(accuracy_ndarray))
plt.plot(accuracy_size, accuracy_ndarray, 'b+', label='accuracy')loss_ndarray = np.array(loss_buf)
loss_size = np.arange(len(loss_ndarray))
plt.plot(loss_size, loss_ndarray, 'r*', label='loss')plt.show()# 保存loss和测试准确率到csv文件
with open('AlexNet.csv', 'w') as fid:for loss, acc in zip(loss_buf, accuracy_buf):strText = str(loss) + ',' + str(acc) + '\n'fid.write(strText)
fid.close()print('end')

训练步骤打印结果如下:
step 0, loss nan, testing accuracy 0.08500000089406967
step 1, loss nan, testing accuracy 0.08500000089406967
step 2, loss nan, testing accuracy 0.08500000089406967
step 3, loss nan, testing accuracy 0.08500000089406967
… …
可以看到,模型无法收敛。

实验2:通过改变权重初始化方法进行优化

后参考文献[1]代码,排查到模型无法收敛的原因可能是weights、biases的初始化不当。上述代码中,tf.truncated_normal默认使用均值mean为0、标准差stddev为1的截断正态分布来初始化W_conv和b_conv。
这里我们可以对上述代码AlexNet1.py做如下修改(其他不变,此部分完整代码详见文献[2]AlexNet2.py):

W_conv = {'conv1': tf.Variable(tf.truncated_normal([11, 11, input_image_channel, 96], mean=0, stddev=0.01)),'conv2': tf.Variable(tf.truncated_normal([5, 5, 96, 256], mean=0, stddev=0.01)),'conv3': tf.Variable(tf.truncated_normal([3, 3, 256, 384], mean=0, stddev=0.01)),'conv4': tf.Variable(tf.truncated_normal([3, 3, 384, 384], mean=0, stddev=0.01)),'conv5': tf.Variable(tf.truncated_normal([3, 3, 384, 256], mean=0, stddev=0.01)),'fc1': tf.Variable(tf.truncated_normal([n_fc1, n_fc2], mean=0, stddev=0.01)),'fc2': tf.Variable(tf.truncated_normal([n_fc2, n_fc3], mean=0, stddev=0.01)),'output': tf.Variable(tf.truncated_normal([n_fc3, n_classes], mean=0, stddev=0.01))
}b_conv = {'conv1': tf.Variable(tf.truncated_normal([96], mean=0.005, stddev=0.1)),'conv2': tf.Variable(tf.truncated_normal([256], mean=0.005, stddev=0.1)),'conv3': tf.Variable(tf.truncated_normal([384], mean=0.005, stddev=0.1)),'conv4': tf.Variable(tf.truncated_normal([384], mean=0.005, stddev=0.1)),'conv5': tf.Variable(tf.truncated_normal([256], mean=0.005, stddev=0.1)),'fc1': tf.Variable(tf.truncated_normal([n_fc2], mean=0.005, stddev=0.1)),'fc2': tf.Variable(tf.truncated_normal([n_fc3], mean=0.005, stddev=0.1)),'output': tf.Variable(tf.truncated_normal([n_classes], mean=0.005, stddev=0.1))
}

训练步骤打印结果如下:
step 1, loss 2299.4792, testing accuracy 0.122
step 2, loss 2299.8113, testing accuracy 0.117
… …
step 11, loss 2293.2812, testing accuracy 0.125
step 12, loss 1955.1497, testing accuracy 0.391
step 13, loss 353.29596, testing accuracy 0.866
step 14, loss 146.65419, testing accuracy 0.954
… …
step 44, loss 36.49175, testing accuracy 0.99
step 45, loss 22.933325, testing accuracy 0.986
step 46, loss 35.3011, testing accuracy 0.99
step 47, loss nan, testing accuracy 0.085
step 48, loss nan, testing accuracy 0.085
step 49, loss nan, testing accuracy 0.085
step 50, loss nan, testing accuracy 0.085
可以看到,此时算法模型可以正常收敛,但在中途会突然梯度爆炸。

实验3:中途调低学习率避免梯度爆炸

为了解决梯度爆炸,我们可以在梯度下降接近低谷附近时调低学习率。这里需要继续在上述代码AlexNet2.py的基础上做些改进,主要是将学习率设为占位符变量,在训练的过程中动态设置学习率。主要改进如下(此部分完整代码详见文献[2]AlexNet3.py):

learning_rate_holder = tf.placeholder(tf.float32)
train_step = tf.train.GradientDescentOptimizer(learning_rate=learning_rate_holder).minimize(loss)... ...with tf.Session(config=config) as sess:sess.run(init)total_batch = mnist_data_set.train.num_examples // batch_sizefor i in range(training_epoch):for iteration in range(total_batch):... ...if i < 30:sess.run(train_step, feed_dict={X: batch_xs, y: batch_ys, learning_rate_holder: learning_rate})elif i < 50:sess.run(train_step, feed_dict={X: batch_xs, y: batch_ys, learning_rate_holder: learning_rate / 10.0})elif i < 70:sess.run(train_step, feed_dict={X: batch_xs, y: batch_ys, learning_rate_holder: learning_rate / 100.0})else:sess.run(train_step, feed_dict={X: batch_xs, y: batch_ys, learning_rate_holder: learning_rate / 1000.0})

训练步骤打印结果如下:
step 1, loss 2300.436, testing accuracy 0.117
step 2, loss 2299.375, testing accuracy 0.13
… …
step 10, loss 2290.4155, testing accuracy 0.154
step 11, loss 678.09644, testing accuracy 0.788
step 12, loss 178.35306, testing accuracy 0.948
… …
step 49, loss 35.42096, testing accuracy 0.988
step 50, loss 34.458153, testing accuracy 0.988
梯度爆炸问题得以解决。

实验4:使用tf.get_variable创建变量,使用tf.global_variables_initializer初始化

上面代码都是使用 tf.Variable(tf.truncated_normal(…)) 来创建权重矩阵的,我们现在尝试使用 tf.get_variable() 来创建权重矩阵。tf.Variable 和 tf.get_variable的区别是前者每次调用都会创建新的对象;而对于后者来说,如果变量已经存在则直接将该变量返回,否则它才会创建一个新的变量 [3]。

在AlexNet1.py的基础上做如下改进,其他不变:(此部分完整代码参见文献[2]AlexNet4.py)

W_conv = {'conv1': tf.get_variable('conv1/weights', shape=[11, 11, input_image_channel, 96]),'conv2': tf.get_variable('conv2/weights', shape=[5, 5, 96, 256]),'conv3': tf.get_variable('conv3/weights', shape=[3, 3, 256, 384]),'conv4': tf.get_variable('conv4/weights', shape=[3, 3, 384, 384]),'conv5': tf.get_variable('conv5/weights', shape=[3, 3, 384, 256]),'fc1': tf.get_variable('fc1/weights', shape=[n_fc1, n_fc2], trainable=True),'fc2': tf.get_variable('fc2/weights', shape=[n_fc2, n_fc3], trainable=True),'output': tf.get_variable('output/weights', shape=[n_fc3, n_classes], trainable=True)
}b_conv = {'conv1': tf.get_variable('conv1/biases', shape=[96]),'conv2': tf.get_variable('conv2/biases', shape=[256]),'conv3': tf.get_variable('conv3/biases', shape=[384]),'conv4': tf.get_variable('conv4/biases', shape=[384]),'conv5': tf.get_variable('conv5/biases', shape=[256]),'fc1': tf.get_variable('fc1/biases', shape=[n_fc2], trainable=True),'fc2': tf.get_variable('fc2/biases', shape=[n_fc3], trainable=True),'output': tf.get_variable('output/biases', shape=[n_classes], trainable=True)
}

训练步骤打印结果如下:
step 1, loss 170.07048, testing accuracy 0.936
step 2, loss 86.70665, testing accuracy 0.972
… …
step 50, loss 26.004112, testing accuracy 0.99
可以看到,算法模型step1时测试准确率就达到93.6%了,且后面没有梯度爆炸。

  在这里,由于我们并没有事先为权重创建变量,所以tf.get_variable会自己创建变量,然后使用tf.global_variables_initializer()初始化所有的变量,可见tf.get_variable和tf.global_variables_initializer()使用了一种较好的初始化策略。

本实验说明了良好的权重初始化对算法模型的训练是非常重要的。

实验5:对卷积层分组

在AlexNet2.py的基础上进行改进,将 W_conv 中的conv4、conv5分成两组,具体改进如下:(代码详见文献[2]AlexNet5.py)

W_conv = {... ...'conv4_1': tf.Variable(tf.truncated_normal([3, 3, 384//2, 384//2], mean=0, stddev=0.01)),'conv4_2': tf.Variable(tf.truncated_normal([3, 3, 384//2, 384//2], mean=0, stddev=0.01)),'conv5_1': tf.Variable(tf.truncated_normal([3, 3, 384//2, 256//2], mean=0, stddev=0.01)),'conv5_2': tf.Variable(tf.truncated_normal([3, 3, 384//2, 256//2], mean=0, stddev=0.01)),... ...
}

对卷积层4、卷积层5的具体改进如下:

# 卷积层4
conv3groups = tf.split(axis=3, num_or_size_splits=2, value=conv3)
conv4_1 = tf.nn.conv2d(conv3groups[0], W_conv['conv4_1'], strides=[1, 1, 1, 1], padding='SAME')
conv4_2 = tf.nn.conv2d(conv3groups[1], W_conv['conv4_2'], strides=[1, 1, 1, 1], padding='SAME')
conv4 = tf.concat(axis=3, values=[conv4_1, conv4_2])
conv4 = tf.nn.bias_add(conv4, b_conv['conv4'])
conv4 = tf.nn.relu(conv4)# 卷积层5
conv4groups = tf.split(axis=3, num_or_size_splits=2, value=conv4)
conv5_1 = tf.nn.conv2d(conv4groups[0], W_conv['conv5_1'], strides=[1, 1, 1, 1], padding='SAME')
conv5_2 = tf.nn.conv2d(conv4groups[1], W_conv['conv5_2'], strides=[1, 1, 1, 1], padding='SAME')
conv5 = tf.concat(axis=3, values=[conv5_1, conv5_2])
conv5 = tf.nn.bias_add(conv5, b_conv['conv5'])
conv5 = tf.nn.relu(conv5)

其他代码不变,训练测试结果打印如下:
step 1, loss 2297.4663, testing accuracy 0.104
step 2, loss 2299.2734, testing accuracy 0.124
… …
step 3, loss 2114.1978, testing accuracy 0.301
step 4, loss 366.07996, testing accuracy 0.872
… …
step 5, loss 44.795494, testing accuracy 0.992
step 6, loss 37.983482, testing accuracy 0.988
和AlexNet2.py相比,此时算法梯度下降速度更快,且不会出现梯度爆炸。

实验6:使用Batch Normalization优化

在AlexNet2.py的基础上,使用Batch Normalization算法优化模型,并且去掉lrn,主要改进如下:(代码详见文献[2]AlexNet6.py)

def batch_norm(inputs, is_training, is_conv_out=True, decay=0.999):scale = tf.Variable(tf.ones([inputs.get_shape()[-1]]))beta = tf.Variable(tf.zeros([inputs.get_shape()[-1]]))pop_mean = tf.Variable(tf.zeros([inputs.get_shape()[-1]]), trainable=False)pop_var = tf.Variable(tf.ones([inputs.get_shape()[-1]]), trainable=False)if is_training:if is_conv_out:batch_mean, batch_var = tf.nn.moments(inputs, [0, 1, 2])else:batch_mean, batch_var = tf.nn.moments(inputs, [0])train_mean = tf.assign(pop_mean, pop_mean*decay+batch_mean*(1-decay))train_var = tf.assign(pop_var, pop_var*decay+batch_var*(1-decay))with tf.control_dependencies([train_mean, train_var]):return tf.nn.batch_normalization(inputs, batch_mean, batch_var, beta, scale, 0.001)else:return tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, scale, 0.001)... ...
... ...conv1 = tf.nn.bias_add(...)
conv1 = batch_norm(conv1, True)
... ...conv2 = tf.nn.bias_add(...)
conv2 = batch_norm(conv2, True)
... ...conv3 = tf.nn.bias_add(...)
conv3 = batch_norm(conv3, True)
... ...conv4 = tf.nn.bias_add(...)
conv4 = batch_norm(conv4, True)
... ...conv5 = tf.nn.bias_add(...)
conv5 = batch_norm(conv5, True)
... ...fc1 = tf.add(...)
fc1 = batch_norm(fc1, True, False)
... ...fc2 = tf.add(...)
fc2 = batch_norm(fc2, True, False)
... ...

训练测试结果打印如下:
step 1, loss 44.443394, testing accuracy 0.979
step 1, loss 34.873466, testing accuracy 0.988
… …
step 1, loss 13.521537, testing accuracy 0.992
step 1, loss 10.757448, testing accuracy 0.991
很明显,使用BN算法优化效果非常显著。

AlexNet6.py优化中,我们使用了tf.truncated_normal并且指定mean、stddev来创建参数矩阵,后来我实验发现,如果使用AlexNet1.py中创建参数矩阵的方法的话(即使用tf.truncated_normal创建参数矩阵但mean和stddev却使用默认的0和1,详见文献[2]AlexNet7.py),则模型仍然是无法收敛的,这说明即使是使用BN优化,但不恰当的参数初始化仍然无法使模型收敛。

最后附上上述实验的loss和accuracy曲线图:
enter image description here

enter image description here

实验总结

  1. 合适的参数初始化是非常重要的;
  2. 动态调整学习率;
  3. 当我们不确定如何手动初始化参数矩阵时,可以使用 tf.get_variable + tf.global_variables_initializer 默认的初始化策略;
  4. 对卷积层分组是一个很好优化思路;
  5. Batch Normalization算法优化效果非常显著。

参考文献

[1] finetune_alexnet_with_tensorflow
[2] 我的handml仓库
[3] tensorflow学习笔记(二十三):variable与get_variable

这篇关于【深度学习笔记2.2.2】AlexNet训练mnist的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035271

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程