DP读书:《ModelArts人工智能应用开发指南》(一)人工智能技术、应用平台

2024-06-06 03:36

本文主要是介绍DP读书:《ModelArts人工智能应用开发指南》(一)人工智能技术、应用平台,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ModelArts

怎么用ModelArts人工智能应用

  • 训练底座
    • 训练案例
  • 盘古矿山模型
    • Main
  • config.py

训练底座

云安全底座

训练案例

在训练案例

盘古矿山模型

盘古矿山模型

Main

下面是快速助手
https://support.huaweicloud.com/qs-modelarts/modelarts_06_0006.html

准备开发环境
在ModelArts控制台的“ 开发环境 > Notebook”页面中,创建基于pytorch1.8-cuda10.2-cudnn7-ubuntu18.04镜像,类型为GPU,规格选择Pnt1或Vnt1系列的Notebook,具体操作请参见创建Notebook实例章节。
如果需要使用本地IDE(PyCharm或VS Code)远程连接Notebook,需要开启SSH远程开发。本案例以在线的JupyterLab为例介绍整个过程。

Notebook创建完成后,状态为“运行中”。单击“操作”栏的“打开”,进入JupyterLab页面。
打开JupyterLab的Terminal。此处以Terminal为例介绍整个过程。JupyterLab更多操作请参见JupyterLab简介及常用操作。
图1 打开Terminal

Step1 创建算法工程
在JupyterLab的Terminal中,在work目录下执行ma-cli createproject命令创建工程,根据提示输入工程名称,例如:water_meter。然后按回车键选择默认参数(连续按五次回车),并选择跳过资产安装步骤(选择6)。
图2 创建工程

执行以下命令进入工程目录。
cd water_meter

执行以下命令复制项目数据到Notebook中。
python manage.py copy --source {obs_dataset_path} --dest ./data/raw/water_meter_crop
python manage.py copy --source {obs_dataset_path} --dest ./data/raw/water_meter_segmentation

说明:
{obs_dataset_path}路径为Step1 准备数据中下载到OBS中的数据集路径,比如“obs://{OBS桶名称}/water_meter_segmentation”和“obs://{OBS桶名称}/water_meter_crop”

图3 复制数据集到Notebook中

Step2 使用deeplabv3完成水表区域分割任务
执行如下命令安装ivgSegmentation套件。
python manage.py install algorithm ivgSegmentation==1.0.2

图4 ivgSegmentation套件安装成功

如果提示ivgSegmentation版本不正确,可以通过命令python manage.py list algorithm查询版本。

安装ivgSegmentation套件后,在JupyterLab界面左侧的工程目录中进入“./algorithms/ivgSegmentation/config/sample”文件夹中查看目前支持的分割模型,以sample为例(sample默认的算法就是deeplabv3),文件夹中包括config.py(算法外壳配置)和deeplabv3_resnet50_standard-sample_512x1024.py(模型结构)。
图5 进入sample文件夹

表盘分割只需要区分背景和读数区域,因此属于二分类,需要根据项目所需数据集对配置文件进行修改,如下所示:
修改“config.py”文件。

图6 修改sample文件夹下的config.py文件

```c
# config.py
alg_cfg = dict(
data_root='data/raw/water_meter_segmentation',   
# 修改为真实路径本地分割数据集路径
```

修改完后按Ctrl+S保存。

修改“deeplabv3_resnet50_standard-sample_512x1024.py”文件。
图7 修改deeplabv3_resnet50_standard-sample_512x1024.py文件

# deeplabv3_resnet50_standard-sample_512x1024.pygpus=[0]
...
data_cfg = dict(...    num_classes=2,  # 修改为2类...    ...    train_scale=(512, 512),  # (h, w)#size全部修改为(512, 512)...    train_crop_size=(512, 512),  # (h, w)...    test_scale=(512, 512),  # (h, w)...    infer_scale=(512, 512),  # (h, w))

修改完按Ctrl+S保存。

在water_meter工程目录下,执行如下命令安装deeplabv3预训练模型。

python manage.py install model ivgSegmentation:deeplab/deeplabv3_resnet50_cityscapes_512x1024

图8 安装deeplabv3预训练模型

执行如下命令训练分割模型。(推荐使用GPU进行训练)

python manage.py run --cfg algorithms/ivgSegmentation/config/sample/config.py --gpus 0

图9 分割模型训练结果

训练好的模型会保存在指定位置中,默认为“./output/deeplabv3_resnet50_standard-sample_512x1024/checkpoints/”中。

验证模型效果。
模型训练完成后,可以在验证集上计算模型的指标,首先修改配置文件的模型位置。

修改“config.py”文件,修改完按Ctrl+S保存。

config.py

...

alg_cfg = dict(

load_from=‘./output/deeplabv3_resnet50_standard-sample_512x1024/checkpoints/checkpoint_best.pth.tar’, # 修改训练模型的路径

)

执行如下命令计算模型指标。

python manage.py run --cfg
algorithms/ivgSegmentation/config/sample/config.py --pipeline evaluate

图10 模型指标计算结果

模型推理。
模型推理能够指定某一张图片,并且推理出图片的分割区域,并进行可视化,首先需要指定需要推理的图片路径。

修改“config.py”文件,修改完按Ctrl+S保存。

alg_cfg = dict(

img_file=‘./data/raw/water_meter_segmentation/image/train_10.jpg’ # 指定需要推理的图片路径

)

执行如下命令推理模型。

python manage.py run --cfg algorithms/ivgSegmentation/config/sample/config.py --pipeline infer

图11 表盘分割模型推理结果

推理输出的图片路径在“./output/deeplabv3_resnet50_standard-sample_512x1024”下。

图12 水表表盘分割结果可视化

执行如下命令导出算法SDK。
python manage.py export --cfg algorithms/ivgSegmentation/config/sample/config.py --is_deploy

算法开发套件支持将模型导出成一个模型SDK,方便进行模型部署等下游任务。SDK导出的路径为“./export/deeplabv3_resnet50_standard-sample_512x1024/Linux_x86_64_GPU_PyTorch_Common_py”

图13 SDK导出路径

图14 SDK导出示意图

Step3 水表读数识别
执行如下命令安装mmocr套件。

这篇关于DP读书:《ModelArts人工智能应用开发指南》(一)人工智能技术、应用平台的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034984

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

SpringBoot集成LiteFlow工作流引擎的完整指南

《SpringBoot集成LiteFlow工作流引擎的完整指南》LiteFlow作为一款国产轻量级规则引擎/流程引擎,以其零学习成本、高可扩展性和极致性能成为微服务架构下的理想选择,本文将详细讲解Sp... 目录一、LiteFlow核心优势二、SpringBoot集成实战三、高级特性应用1. 异步并行执行2