回炉重造java----JUC(第二天)

2024-06-06 02:04
文章标签 java 第二天 juc 回炉 重造

本文主要是介绍回炉重造java----JUC(第二天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Monitor---监视器/管程

对象头:

操作系统提供的Monitor对象

Synchronized底层实现原理:

①锁对象在加了synchronized之后,对象头中的Mark Word中就存了一个Monitor的地址指针。

②当一个线程获取到锁之后,Monitor中的Owner属性指向了该获得锁的线程。

③当锁还没释放时,其他的线程来获得锁,就会进入EntryList等待队列中等待。

④当线程2释放锁之后,通知Monitor中的等待队列中的线程,通过一些策略进行选择一个线程拿出来并且获得锁,把Owner指向该获得锁的线程。

⑤当一个线程获取到锁后,发现自身任不满足一些条件,就会调用wait()方法进入Wait_Set中等待(此时线程是进入了Waiting状态),当另一个线程获得锁并且把条件送过来了(即调用notify()唤醒Wait_Set方法中的一个线程或者使用notifyAll()唤醒所有的线程),然后线程就可以再次进入EntryList中去竞争获得锁。

字节码指令:

Synchronized优化/升级

线程状态的转换

1:start():NEW----->Runnable

2:wait():Runnable------> Waiting。notify(),notifyAll(),interrupt():Waiting------>Runnable(注意这里从Waiting转向Runnable是竞争获取到了锁,如果没获取到锁,则会进入Blocked)。

3:join():Runnable------> Waiting。子线程结束或者interrupt():Waiting------>Runnable。

4:park():Runnable------> Waiting。unpark():Waiting------>Runnable。

5:wait(time):Runnable------> Timed_Waiting。超过时间或者被唤醒:Timed_Waiting------>Runnable(注意这里从Timed_Waiting转向Runnable也是竞争获取到了锁,如果没获取到锁,则会进入Blocked)。

6,8:join(time)/parkNanos(time):Runnable------> Timed_Waiting。超过时间或者被唤醒:Timed_Waiting------>Runnable

7:sleep(time):Runnable------> Timed_Waiting。时间到了或者被唤醒:Timed_Waiting------>Runnable。

9:获取锁失败:Runnable------>Blocked。获取锁成功:Runnable------>Blocked。

10:执行代码结束:Runnable------>Terminated。

活锁与死锁

活锁:是一种现象,两个线程一直改变对方的结束条件,导致两个线程都无法结束,一直僵持运行下去。

死锁:死锁是两个线程为了获得锁,并且都需要对象已经占有的锁,导致谁也无法获取的锁,一直僵持死锁状态。

ReentrantLock(可重入锁) 

主要特点:①可中断(其他线程可以通过interrupt()打断正在等待锁的线程)

                  ②可设置超时时间(一个线程尝试获得锁失败后,一般会进行阻塞状态一直等待锁,但是ReentrantLock可设置一个超时时间,当等待时间超过该时间就会自动放弃获得锁)

                  ③可设置为公平锁(先来的线程先获得锁,解决饥饿问题,但是会降低并发度)

                  ④支持多个条件变量(支持多个WaitSet去存放等待的线程,通过Condition中的await()方法去让想线程放进等待室,通过signal()或者signalAll()去唤醒对应休息室的线程)

                  ⑤与Synchronized一样,都支持可重入(可重入就是当一个线程获得了锁之后,如果再次尝试获得该锁也会成功,如果是非重入的话,第二次获得就会把自己锁住)

public class ReentrantLockTest {private static ReentrantLock lock = new ReentrantLock();public static void main(String[] args) {lock.lock();try {System.out.println("我获得了锁,开始操作");m1();}finally {lock.unlock();System.out.println("我释放锁了");}}public static void m1(){lock.lock();try {System.out.println("我重入了锁,要开始我自己的操作");}finally {lock.unlock();System.out.println("我释放锁了");}}
}

同步模式---顺序执行线程

 wait()和notify()方式:

public class SortThreadTest {static final Object lock = new Object(); //锁对象static boolean t2done = false; //t2是否执行的信号public static void main(String[] args) {//创建t1线程new Thread(()->{//获得锁synchronized (lock){while (! t2done){ //判断t2是否已经执行完try {lock.wait(); //如果没有执行,则让出CPU去等待} catch (InterruptedException e) {e.printStackTrace();}}System.out.println("我t1成功执行!!!"); //如果t2已经执行,t1再执行}}).start();//创建t2线程new Thread(()->{//获得锁synchronized (lock){System.out.println("我t2要先执行呀!!!"); //t2要先执行,就直接执行t2done = true; //改变信号lock.notify(); //去WaitSet中唤醒正在等待的t1}}).start();}
}

await()和signal()方式:

public class SortThreadTest01 {//创建ReentrantLock对象private static ReentrantLock reentrantLock = new ReentrantLock();//新建一个WaitSetstatic Condition condition1 = reentrantLock.newCondition();//创建t2完成的信号变量static Boolean t2done = false;public static void main(String[] args) {//创建线程t1new Thread(()->{//获取锁reentrantLock.lock();try {while (! t2done){//t2还没执行,进入WaitSet等待try {condition1.await();} catch (InterruptedException e) {e.printStackTrace();}}//t2执行完毕后,t1执行System.out.println("我t1要在后面执行!!");}finally {//释放锁reentrantLock.unlock();}}).start();//创建线程t2new Thread(()->{//获取锁reentrantLock.lock();try {//t2直接执行System.out.println("我t2要在前面执行!!");//执行完后,设置信号t2done = true;//唤醒t1condition1.signal();}finally {//释放锁reentrantLock.unlock();}}).start();}
}

同步模式---交替执行线程

public class CrossThreadTest {public static void main(String[] args) {test t = new test(1,5);new Thread(()->{t.print("a",1,2);}).start();new Thread(()->{t.print("b",2,3);}).start();new Thread(()->{t.print("c",3,1);}).start();}}class test{public void print(String str,int waitflag,int nextflag){for (int i = 0; i < loopnumber; i++) {synchronized (this){while (flag != waitflag){try {this.wait();}catch (InterruptedException e){e.printStackTrace();}}System.out.print(str);flag = nextflag;this.notifyAll();}}}private int flag;private int loopnumber;public test(int flag, int loopnumber) {this.flag = flag;this.loopnumber = loopnumber;}
}

这篇关于回炉重造java----JUC(第二天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034790

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java Map排序如何按照值按照键排序

《JavaMap排序如何按照值按照键排序》该文章主要介绍Java中三种Map(HashMap、LinkedHashMap、TreeMap)的默认排序行为及实现按键排序和按值排序的方法,每种方法结合实... 目录一、先理清 3 种 Map 的默认排序行为二、按「键」排序的实现方式1. 方式 1:用 TreeM

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node