蒙特卡洛方法近似计算圆周率

2024-06-05 20:44

本文主要是介绍蒙特卡洛方法近似计算圆周率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、原理图

正方形区域内有1/4圆区域,向区域内随机大量掷点。根据概率论知识,落在每一点的概率相等,当n无限大时,落在1/4区域内的点占总点数量的比例即1/4圆占正方形面积的比例,圆周率PI=4(N1/N)[N1:落在1/4圆中点的数量,N:总点数]。

二、c++试验

#include <iostream>
#include <random>
#include <cmath>
#include <iomanip>  // 为了设置输出精度using namespace std;
typedef long long ll;int main()
{int N = 10; // 点阵的规模N*Nint M = 100;// 掷点数量for (int N = 10; N <= 10000; N *= 10){for (int M = N*N; M <= 100000000; M *= 10){int cnt = 3;while (cnt--){std::random_device rd;  // 真随机数生成器std::mt19937 gen(rd()); // 使用Mersenne Twister算法生成高质量随机数std::uniform_real_distribution<> dis(0.0, N); // 生成0到N之间的均匀分布的浮点数long double PI; // 近似圆周率ll N1 = 0; // 落在半圆内的点数量for (ll i = 0; i < M; i++){long double x = dis(gen);long double y = dis(gen);long double d = sqrt(x * x + y * y);if (d <= N)  N1++;}PI = (N1 / (long double)M) * 4;cout<<"N="<<N<<",M="<<M << setprecision(15) << "时近似计算圆周率π = " << PI << endl; // 设置输出精度}}}
}

改变M、N的值,观察输出圆周率的精度(M最大取了100000000,再大循环太折磨了...)

结果如下:

N=10,M=100时近似计算圆周率π = 3.2
N=10,M=100时近似计算圆周率π = 3.04
N=10,M=100时近似计算圆周率π = 3.28
N=10,M=1000时近似计算圆周率π = 3.076
N=10,M=1000时近似计算圆周率π = 3.264
N=10,M=1000时近似计算圆周率π = 3.12
N=10,M=10000时近似计算圆周率π = 3.1464
N=10,M=10000时近似计算圆周率π = 3.158
N=10,M=10000时近似计算圆周率π = 3.1344
N=10,M=100000时近似计算圆周率π = 3.13672
N=10,M=100000时近似计算圆周率π = 3.13812
N=10,M=100000时近似计算圆周率π = 3.13512
N=10,M=1000000时近似计算圆周率π = 3.14016
N=10,M=1000000时近似计算圆周率π = 3.142876
N=10,M=1000000时近似计算圆周率π = 3.143608
N=10,M=10000000时近似计算圆周率π = 3.1416004
N=10,M=10000000时近似计算圆周率π = 3.1419076
N=10,M=10000000时近似计算圆周率π = 3.1425656
N=10,M=100000000时近似计算圆周率π = 3.14145444
N=10,M=100000000时近似计算圆周率π = 3.14154308
N=10,M=100000000时近似计算圆周率π = 3.14189244
N=100,M=10000时近似计算圆周率π = 3.1204
N=100,M=10000时近似计算圆周率π = 3.1444
N=100,M=10000时近似计算圆周率π = 3.1388
N=100,M=100000时近似计算圆周率π = 3.14372
N=100,M=100000时近似计算圆周率π = 3.14164
N=100,M=100000时近似计算圆周率π = 3.14344
N=100,M=1000000时近似计算圆周率π = 3.13904
N=100,M=1000000时近似计算圆周率π = 3.141212
N=100,M=1000000时近似计算圆周率π = 3.14156
N=100,M=10000000时近似计算圆周率π = 3.1418392
N=100,M=10000000时近似计算圆周率π = 3.1423576
N=100,M=10000000时近似计算圆周率π = 3.1415224
N=100,M=100000000时近似计算圆周率π = 3.14161424
N=100,M=100000000时近似计算圆周率π = 3.14168548
N=100,M=100000000时近似计算圆周率π = 3.14168172
N=1000,M=1000000时近似计算圆周率π = 3.142296
N=1000,M=1000000时近似计算圆周率π = 3.140968
N=1000,M=1000000时近似计算圆周率π = 3.14106
N=1000,M=10000000时近似计算圆周率π = 3.142186
N=1000,M=10000000时近似计算圆周率π = 3.1408512
N=1000,M=10000000时近似计算圆周率π = 3.1420132
N=1000,M=100000000时近似计算圆周率π = 3.14153392
N=1000,M=100000000时近似计算圆周率π = 3.14163044
N=1000,M=100000000时近似计算圆周率π = 3.14182124
N=10000,M=100000000时近似计算圆周率π = 3.14151084
N=10000,M=100000000时近似计算圆周率π = 3.14142316
N=10000,M=100000000时近似计算圆周率π = 3.14153156

从你的实验结果可以看出,随着 M 的增加,计算出的圆周率 π 的精度逐渐提高,结果也更加接近实际值 (  3.14159265 )。同时,增加 N 也可以在一定程度上提高精度。

这篇关于蒙特卡洛方法近似计算圆周率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034129

相关文章

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A