TensorFlow | 使用Tensorflow带你实现MNIST手写字体识别

2024-06-05 19:48

本文主要是介绍TensorFlow | 使用Tensorflow带你实现MNIST手写字体识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

github:https://github.com/MichaelBeechan
CSDN:https://blog.csdn.net/u011344545

涉及代码:https://github.com/MichaelBeechan/Learning_TensorFlow-Kaggle_MNIST 欢迎Fork和Star

Learning_TensorFlow-Kaggle_MNIS

一步步带你通过项目(MNIST手写识别)学习入门TensorFlow以及神经网络的知识

**

TF_Variable:TensorFlow入门

**

# -*- coding:utf-8 -*-
"""
Name: Michael Beechan
School: Chongqing University of Technology
Time: 2018.10.4
Description: tensorflow变量初始化
https://baike.baidu.com/item/TensorFlow/18828108?fr=aladdin
"""
import tensorflow as tf
# 变量定义
w = tf.Variable([[0.5, 1.0]])
x = tf.Variable([[2.0], [1.0]])
# 矩阵乘法
y = tf.matmul(w, x)
print(y)# 函数
norm = tf.random_normal([2, 3], mean = -1, stddev = 4)
c = tf.constant([[1, 2], [3, 4], [5, 6]])
shuff = tf.random_shuffle(c)  # shuffle洗牌
sess = tf.Session()
print(sess.run(norm))
print(sess.run(shuff))
# 将numpy的一些数据转换为tensorflow能用的类型
import numpy as np
a = np.zeros((3, 3))
ta = tf.convert_to_tensor(a)
print(sess.run(ta))# 创建一个变量 并用for循环对变量进行赋值操作
num  =tf.Variable(0, name="count")
new_value = tf.add(num, 10)
op = tf.assign(num, new_value)
print(op)
# 初始化全局变量
init_op = tf.global_variables_initializer()
# 定义运行会话
with tf.Session() as sess:sess.run(init_op)print(sess.run(num))for i in range(5):sess.run(op)print(sess.run(num))# 通过feed设置placeholder的值
# 声明变量是不赋值,计算时进行赋值  使用feed
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
value_new = tf.multiply(input1, input2)with tf.Session() as sess:print(sess.run(value_new, feed_dict={input1:23.0, input2:11.0}))

**

Kaggle_mnist

**
使用softMax作为激活函数,交叉熵做损失函数,梯度下降法优化的单层神经网络学习识别
准确率:88%左右

#-*- coding:utf-8 -*-
"""
Name: Michael Beechan
School: Chongqing University of Technology
Time: 2018.10.4
Description: Kaggle MINIST 手写图片识别  Digit Recognizer
http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html
"""
"""
一、数据的准备
二、模型的设计
三、代码实现
28*28 = 784 的二维数组
训练数据和测试数据,都可以分别转化为[42000,769]和[28000,768]的数组
模型建立:
1)使用一个最简单的单层的神经网络进行学习
2)用SoftMax来做为激活函数
3)用交叉熵来做损失函数
4)用梯度下降来做优化方式
"""#88.45% 识别正确率
import pandas as pd
import numpy as np
import tensorflow as tf#加载数据
train = pd.read_csv("train.csv")
images = train.iloc[:, 1:].values
#labels_flat = train[[0]].values.ravel()
labels_flat = train.iloc[:, 0].values.ravel()#输入处理
images = images.astype(np.float)
images = np.multiply(images, 1.0 / 255.0)
print("输入数据的数量:(%g, %g)" % images.shape)
images_size = images.shape[1]
images_width = images_height = np.ceil(np.sqrt(images_size)).astype(np.uint8)
print("图片的长 = {0}\n图片的高 = {1}".format(images_width, images_height))x = tf.placeholder('float', shape=[None, images_size])#结果处理
labels_count = np.unique(labels_flat).shape[0]
print('结果的种类 = {0}'.format(labels_count))
y = tf.placeholder('float', shape=[None, labels_count])#One-Hot编码 :离散特征处理——独热编码  scikit_learn有封装了现成的编码函数OneHotEncoder()
def dense_to_one_hot(labels_dense, num_calsses):num_labels = labels_dense.shape[0]index_offset = np.arange(num_labels) * num_calsseslabels_one_hot = np.zeros((num_labels, num_calsses))#flat返回的是一个迭代器labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1return labels_one_hotlabels = dense_to_one_hot(labels_flat, labels_count)
labels = labels.astype(np.uint8)
print('结果的数量:({0[0]}, {0[1]})'.format(labels.shape))#数据划分
VALIDATION_SIZE = 2000validation_images = images[:VALIDATION_SIZE]
validation_labels = labels[:VALIDATION_SIZE]train_images = images[VALIDATION_SIZE:]
train_labels = labels[VALIDATION_SIZE:]batch_size = 100
n_batch = len(train_images)//batch_size#建立神经网络
weight = tf.Variable(tf.zeros([784, 10]))
biases = tf.Variable(tf.zeros([10]))
result = tf.matmul(x, weight) + biases
prediction = tf.nn.softmax(result)loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=prediction))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)init = tf.global_variables_initializer()correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))with tf.Session() as sess:sess.run(init)for epoch in range(50):for batch in range(n_batch):batch_x = train_images[batch * batch_size:(batch+1) * batch_size]batch_y = train_labels[batch * batch_size:(batch+1) * batch_size]sess.run(train_step, feed_dict={x:batch_x, y:batch_y})accuracy_n = sess.run(accuracy, feed_dict={x:validation_images, y:validation_labels})print("第"+str(epoch+1)+"轮,准确度为:" + str(accuracy_n))```**

CNN_mnist

卷积神经网络——卷积层1+池化层1+卷积层2+池化层2+全连接1+Dropout层+输出层
准确率:训练20 accuracy is 0.984

#-*- coding:utf-8 -*-
"""
Name: Michael Beechan
School: Chongqing University of Technology
Time: 2018.10.4
Description: MINIST Digit Recognizer CNN
https://www.zhihu.com/question/52668301
"""
#卷积层1+池化层1+卷积层2+池化层2+全连接1+Dropout层+输出层
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plot
from tensorflow.examples.tutorials.mnist import input_data
import pandas as pd#Add data
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")#Get data and deal data  astype()转换数据类型
x_train = train.iloc[:, 1:].values
x_train = x_train.astype(np.float)
x_train = np.multiply(x_train, 1.0 / 255.0)#Get image width and height
image_size = x_train.shape[1]
images_width = images_height = np.ceil(np.sqrt(image_size)).astype(np.uint8)print('数据样本大小:(%g, %g)' % x_train.shape)
print('图像的维度大小:{0}'.format(image_size))
print('图像长度:{0}\n高度:{1}'.format(images_width, images_height))#Get data labels
labels_flat = train.iloc[:, 0].values.ravel()
#对于一维数组或者列表,unique函数去除其中重复的元素,并按元素由大到小返回一个新的无元素重复的元组或者列表
labels_count = np.unique(labels_flat).shape[0]#One-Hot function
def dense_to_one_hot(labels_dense, num_classes):num_labels = labels_dense.shape[0]index_offset = np.arange(num_labels) * num_classeslabels_one_hot = np.zeros((num_labels, num_classes))labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1return labels_one_hot#one-hot deal labels
labels = dense_to_one_hot(labels_flat, labels_count)
labels = labels.astype(np.uint8)print('标签({0[0]}, {0[1]})'.format(labels.shape))
print('图像标签Example:[{0}] --> {1}'.format(25, labels[25]))#Divide train data to train and validation
VALIDATION_SIZE = 2000
train_images = x_train[VALIDATION_SIZE:]
train_labels = labels[VALIDATION_SIZE:]validation_images = x_train[:VALIDATION_SIZE]
validation_labels = labels[:VALIDATION_SIZE]#set batch size and get the sum total of batch
batch_size = 100
n_batch = len(train_images) // batch_size#define Empty variable (data)x: 784 (labels)y: 10
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])#define function to deal data
def weight_variable(shape):#initial weight --- normal distribution#一个截断的产生正太分布的函数,就是说产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):# initial bias -- nonzeroinitial = tf.constant(0.1, shape=shape)return tf.Variable(initial)#packaging TensorFlow 2D convolution
def conv2D(x, W):return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
#packaging Tensorflow Pooling layer
def max_pool_2x2(x):return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')#Transform input data to 4D tensor, 2 and 3 is width and height, 4 is color
x_image = tf.reshape(x, [-1, 28, 28, 1])#compute 32 features 3*3 patch
w_conv1 = weight_variable([3, 3, 1, 32])
b_conv1 = bias_variable([32])#28*28 images conv step-size is 1   2*2 max pool
#After pool [28/2, 28/2] = [14, 14] the second pool [14/2, 14/2] = [7, 7]
#conv data
h_conv1 = tf.nn.relu(conv2D(x_image, w_conv1) + b_conv1)
#pool result
h_pool1 = max_pool_2x2(h_conv1)#On the previous basis, generate 64 features
w_conv2 = weight_variable([6, 6, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2D(h_pool1, w_conv2) + b_conv2)#max_pool 2*2 --> [7, 7]
h_pool2 = max_pool_2x2(h_conv2)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])#Fully connected neural network  1024 Neural
w_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)#Dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)#1024 to 10D output
w_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2#build loss function --> cross entropy
#tf.nn.softmax_cross_entropy_with_logits
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels = y, logits=y_conv))
#optimizing para
train_step_1 = tf.train.AdadeltaOptimizer(learning_rate=0.1).minimize(loss)#compute accuracy
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_conv, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))#Set the filename parameter to save the model
global_step = tf.Variable(0, name='globle_step', trainable=False)
saver  =tf.train.Saver()#initial variable
init = tf.global_variables_initializer()#train
with tf.Session() as sess:sess.run(init)# saver.restore(sess, "model.ckpt-12")# iter 20for epoch in range(1, 20):for batch in range(n_batch):# each times get one data patch to trainbatch_x = train_images[(batch) * batch_size:(batch+1) * batch_size]batch_y = train_labels[(batch) * batch_size:(batch+1) * batch_size]# the most important step -->sess.run(train_step_1, feed_dict={x:batch_x, y:batch_y, keep_prob:0.5})# each period compute accuracyaccuracy_n = sess.run(accuracy, feed_dict={x:validation_images, y:validation_labels, keep_prob:1.0})print("The " + str(epoch+1) + "th, accuracy is " + str(accuracy_n))# save train model# global_step.assign(epoch).eval()# saver.save(sess, "model.ckpt", global_step=global_step)

接下来改进方案进一步提高准确率。。。。。使用大神的自归一化神经网络

这篇关于TensorFlow | 使用Tensorflow带你实现MNIST手写字体识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034009

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal