LMDeploy Windows 平台最佳实践

2024-06-05 19:36

本文主要是介绍LMDeploy Windows 平台最佳实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Windows 是全球范围内最流行的操作系统之一,许多企业和个人用户都在使用 Windows 系统。通过在 Windows 系统上支持 LLM 的推理,许多办公软件、聊天应用等都可以受益于 LLM 的技术,为用户提供更智能、更个性化的服务。LMDeploy 支持在 Windows 平台进行部署与使用,本文会从以下几个部分,介绍如何使用 LMDeploy 部署 internlm2-chat-1_8b 模型。

  • 环境配置

  • LMDeploy Chat CLI 工具

  • LMDeploy pipeline (python)

  • LMDeploy serving

环境配置

安装显卡驱动 & CUDA Toolkit

https://developer.nvidia.com/cuda-12-1-1-download-archive?target_os=Windows&target_arch=x86_64

成功安装后,打开 Powershell 后,环境变量 CUDA_PATH 不为空。

安装 LMDeploy

conda create -n lmdeploy python=3.10
conda activate lmdeploy
pip install lmdeploy --extra-index-url https://download.pytorch.org/whl/cu121

需要注意的是,--extra-index-url 不能省略,不然会安装 CPU 版本的 PyTorch

下载模型

mkdir D:\workspace
cd D:\workspace
huggingface-cli download --resume-download --cache-dir cache --local-dir-use-symlinks False --local-dir internlm2-chat-1_8b internlm/internlm2-chat-1_8b

命令行 CLI

LMDeploy 提供命令行工具,可以非常方便地在 Powershell 进行对话,相关命令是:

lmdeploy chat .\internlm2-chat-1_8b\

LMDeploy 会根据 $env:CUDA_PATH 添加 CUDA Runtime 的目录,并在程序的开头会打印目录。如果没有下图红线的部分,需要检查显卡驱动以及 CUDA Toolkit 是否正确安装。

运行结果如下:

pipeline

LMDeploy 提供了 Python api,可以方便集成到其他的工具中,相关的用法如下。

from lmdeploy import pipeline
pipe = pipeline('internlm2-chat-1_8b')
pipe('上海有什么景点')

运行结果如下:

pipeline 启动时参数设置可参考 https://lmdeploy.readthedocs.io/zh-cn/latest/api/pipeline.html

服务化

LMDeploy 支持把模型一键封装为服务,对外提供的 RESTful API 兼容 openai 的接口。以下为使用方式:

服务端:

lmdeploy serve api_server .\internlm2-chat-1_8b\

更多使用方式可参考 https://lmdeploy.readthedocs.io/en/latest/serving/api_server.html

客户端:

from openai import OpenAI
client = OpenAI(api_key='YOUR_API_KEY',base_url="http://127.0.0.1:23333/v1"
)
model_name = client.models.list().data[0].id
response = client.chat.completions.create(model=model_name,messages=[{"role": "user", "content": "上海有什么著名景点"},],temperature=0.8,top_p=0.8
)
print(response)

FAQ:

Q: 如何使用 LMDeploy cuda11 的版本?

A: 安装 CUDA Toolkit >= 11.3 并确保显卡驱动的版本支持 CUDA Toolkit,之后可以从 LMDeploy Release 页面 找到使用 CUDA11 编译的 whl 包,以 python3.10, LMDeploy v0.4.2 为例,安装方式为:

pip install https://github.com/InternLM/lmdeploy/releases/download/v0.4.2/lmdeploy-0.4.2+cu118-cp310-cp310-win_amd64.whl --extra-index-url https://download.pytorch.org/whl/cu118

Q:模型过大,显存不够加载模型怎么办?

A:可以考虑把模型权重量化为 4bit,然后再部署。模型大小的快速估算方式为,1B 大小的模型,其权重(16bit)大约需要 2G 的显存。量化为 4bit 后,大约只需 0.5G 显存。7B 模型,4bit 量化后,约 3.5 G。具体方法请参考文档:https://lmdeploy.readthedocs.io/en/latest/quantization/w4a16.html

Q:如何使用多卡推理?

A:对于在 Windows 宿主机上直接使用 LMDeploy 的方式,由于 NVIDIA 并未提供 Windows 平台的 NCCL 运行时,所以不支持多卡推理。

这篇关于LMDeploy Windows 平台最佳实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033977

相关文章

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行