旋转矩阵简单可视化与平移向量方向问题探讨

2024-06-05 17:38

本文主要是介绍旋转矩阵简单可视化与平移向量方向问题探讨,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接触了SLAM好久了,但是对于变换矩阵和平移矩阵始终觉得没有完全理解透彻,刚好碰到了因为理解导致的错误,就借此再整理一下!

直接开始!

1.只有平移时:

在这里插入图片描述
注意:不论在哪个坐标系中表示空间中的一个点,都不会改变这个点的位置,只是在不同的坐标系中,坐标值会不一样,请仔细理解一下!
O ′ − x ′ y ′ z ′ O'-x'y'z' Oxyz坐标系就是将 O − x y z O-xyz Oxyz坐标系沿着 y y y轴向右平移10个单位。
P w P_w Pw O − x y z O-xyz Oxyz坐标系下的坐标值为 [ 0 , 0 , 1 ] T [0,0,1]^T [0,0,1]T
P w P_w Pw O ′ − x ′ y ′ z ′ O'-x'y'z' Oxyz坐标系的坐标值为 [ 0 , − 10 , 1 ] T [0,-10,1]^T [0,10,1]T,并将该坐标值记做 P c P_c Pc
  
   P w P_w Pw在两个坐标系下坐标值的关系,可以用如下关系式表示: P c = R c w ∗ P w + t c w (0) P_c = R_{cw} * P_w + t_{cw} \tag 0 Pc=RcwPw+tcw(0)
由于上述两个坐标系并没有发生旋转变换,所以:
旋转矩阵 R c w = [ 1 0 0 0 1 0 0 0 1 ] R_{cw} = \left[\begin{matrix} 1&0&0 \\0&1&0\\0&0&1 \end{matrix}\right] Rcw=100010001,而平移向量 t c w = [ 0 , − 10 , 0 ] T t_{cw} = [0,-10,0]^T tcw=[0,10,0]T
我们可以发现平移向量 t c w t_{cw} tcw是一个 O ′ O' O指向 O O O的向量。

2.只有旋转时:

在这里插入图片描述
O − x y z O-xyz Oxyz坐标系绕着 y y y轴逆时针旋转 90 ° 90\degree 90°得到 O ′ − x ′ y ′ z ′ O'-x'y'z' Oxyz坐标系。同样的在 O − x y z O-xyz Oxyz坐标系下的一个点 P w = [ 0 , 0 , 1 ] T P_w = [0,0,1]^T Pw=[0,0,1]T,在 O ′ − x ′ y ′ z ′ O'-x'y'z' Oxyz坐标系下的坐标值为 P c = [ − 1 , 0 , 0 ] T P_c = [-1,0,0]^T Pc=[1,0,0]T,此时两个点之间的变换满足如下关系式子:
P c = R c w ∗ P w + t c w P_c = R_{cw}*P_w + t_{cw} Pc=RcwPw+tcw
R c w = [ c o s ( − 90 ) 0 s i n ( − 90 ) 0 1 0 − s i n ( − 90 ) 0 c o s ( − 90 ) ] R_{cw}= \left[\begin{matrix}cos(-90)& 0& sin(-90) \\ 0& 1& 0\\ -sin(-90)& 0& cos(-90) \end{matrix}\right] Rcw=cos(90)0sin(90)010sin(90)0cos(90), t c w = [ 0 , 0 , 0 ] T t_{cw}=[0,0,0]^T tcw=[0,0,0]T

即有旋转又有平移

在这里插入图片描述
O − x y z O-xyz Oxyz坐标系下,有一个点 P w = [ a , b , c ] T P_w=[a,b,c]^T Pw=[a,b,c]T,它在 O ′ − x ’ y ′ z ′ O'-x’y'z' Oxyz坐标系下的坐标为 P c = [ a ′ , b ′ , c ′ ] T P_c=[a',b',c']^T Pc=[a,b,c]T,同样的它也满足下式子:
P c = R c w ∗ P w + t c w P_c = R_{cw}*P_w + t_{cw} Pc=RcwPw+tcw
同样的平移向量 t c w t_{cw} tcw依然是 O ′ O' O指向 O O O

总结

由上面的简单过程,我们可以对 P c = R c w ∗ P w + t c w P_c = R_{cw}*P_w + t_{cw} Pc=RcwPw+tcw式子这样理解:
  
   R c w ∗ P w R_{cw}*P_w RcwPw表示将点 P w P_w Pw O − x y z O-xyz Oxyz坐标系下的坐标,旋转到 O ′ − x ′ y ′ z ′ O'-x'y'z' Oxyz坐标系下,也就是用 O ′ − x ′ y ′ z O'-x'y'z Oxyz坐标系下的坐标值来表示 P w P_w Pw点。有一点你需要注意,旋转完之后,两个坐标系的原点依然是重合,因为旋转矩阵不会导致平移。
  
  然后加上平移向量 t c w t_{cw} tcw,就完成了整个旋转和平移变换。对于平移向量方向是 O ‘ O‘ O指向 O O O,也就是变换完成之后的坐标系原点指向变换之前坐标系的原点。
  
  当然也有别的理解方式,找到自己习惯的就可以,你也可以自己画图一步一步理解!

这篇关于旋转矩阵简单可视化与平移向量方向问题探讨的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033730

相关文章

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.