非线性优化库g2o使用教程,探索一些常见的用法,以及信息矩阵、鲁棒核函数对于优化的结果的影响

本文主要是介绍非线性优化库g2o使用教程,探索一些常见的用法,以及信息矩阵、鲁棒核函数对于优化的结果的影响,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇博客将总结一些常见的g2o用法。通过这篇内容你将至少可以大致掌握g2o的用法,以及一些可以使优化结果更好的小技巧,包括鲁邦和函数、信息矩阵的用法等等。

注意:本篇博客的重点是介绍g2o,所以不会去为非线性化方法做太多的铺垫,因此要想理解以下代码和思路,需要你具备一些非线性优化的理论知识,至少要明白什么是非线性优化,它主要是为了做什么,它是怎么实现的?

我们先来看第一个例子:曲线拟合

1.曲线拟合

在这里插入图片描述

图1

我们现在有以下任务要求:找到一条函数曲线去拟合上图中的这些散点,使得所有点均匀的分散在这个拟合曲线的两侧

散点:图一中那些离散的蓝色圆点。

这里我给出一种思路,主要是为了帮助对非线性优化不是很熟悉的同学。咱们想一下如果有这么一条曲线,所有散点到它的距离之和最小,那么是不是这条曲线就可以很好的拟合这些散点了。

下面我将通过一些数学公式来描述这个数学问题,但是我会省略一些过程。(请不要忘记我们目标是学习g2o的用法)

假设,我们要用来拟合这些散点的函数是: y = a exp ⁡ ( − λ x + b ) y = a\exp(-\lambda x + b) y=aexp(λx+b)

类似的,按照上面说的思路,要实现所有距离之和最小,可以用如下数学式来表达:
min ⁡ a , b , λ ∑ i N ( y i − a exp ⁡ ( − λ x i + b ) ) (1) \min_{a,b,\lambda} \sum_i^N (y_i-a\exp(-\lambda x_i + b)) \tag 1 a,b,λminiN(yiaexp(λxi+b))(1)

当然你也可以构造成的别的形式,方法并不唯一

我们的目标就是找到一组 a , b , λ a,b,\lambda a,b,λ的解,使得式(1)整体值最小,也就是各个点到曲线的距离在 y y y方向的和最小。

数学上处理(1)式的大致思路是:对其进行求导,然后通过导数确定函数值下降的方向,然后通过迭代的方式获得(1)式最小值时对应的 a , b , λ a,b,\lambda a,b,λ

不知道上面说的这些东西,你是否都理解,如果你觉得理解不了,你需要看一些关于非线性优化的资料,了解一些它的目的和思路!

下面我们就进入g2o优化的阶段,我们来看一下g2o是怎么处理这个问题的。在g2o中,对于优化问题统统都抽象成边和顶点来表示

  • 顶点:待优化的变量
  • 边:每一个误差项

上述表述,有一些抽象。对应曲线拟合这个例子来,那么顶点就是我们要求的变量 a , b , λ a,b,\lambda a,b,λ,边就是每一个测量对应的误差,更具体一点儿来说就是 y i − a exp ⁡ ( − λ x i + b ) y_i-a\exp(-\lambda x_i + b) yiaexp(λxi+b)的值。

那么这个曲线的拟合的例子中,就只有一个顶点,N条边!

只要是能把优化问题表示成顶点和边的形式,就可以非常容易的调用g2o来进行优化。

我们先来看一下g2o的类组成关系
在这里插入图片描述

图2

我们从SparseOptimizer这个类开始看,它需要一个OptimazationAlgorithm,g2o中提供了三种优化算法可以选择,GN、LM、DogLeg。而OptimazationAlgorithm需要一个Solver,同样的可以有多种求解器来选择。类似的可以看到SparseOptimizer就是一个HyperGraph,它由多个边和多个顶点组成。

总结起来,g2o的用法就是先构造优化算法,然后构造边和顶点,最后就可以进行优化的操作了。

下面咱们先来构造优化优化算法,代码如下:

	//为了代码简洁typedef g2o::BlockSolver<g2o::BlockSolverTraits<Eigen::Dynamic, Eigen::Dynamic> > MyBlockSolver;//block求解器typedef g2o::LinearSolverDense<MyBlockSolver::PoseMatrixType> MyLinearSolver;//线性求解器// 初始化一个SparseOptimizer对象g2o::SparseOptimizer optimizer;//初始化一个优化算法g2o::OptimizationAlgorithmLevenberg *solver = new g2o::OptimizationAlgorithmLevenberg(g2o::make_unique<MyBlockSolver>(g2o::make_unique<MyLinearSolver>()));//将优化算法设置给SparseOptimizeroptimizer.setAlgorithm(solver);

以上就是一个最简单的SparseOptimizer对象的构造方法,有了这个优化器,然后再添加边和顶点:
顶点

//根据图2的顶点构造关系,需要从基类中继承,然后对基类BaseVertex中的一些虚函数进行实现
class VertexParams : public g2o::BaseVertex<3, Eigen::Vector3d> {
public://Eigen自动内存对齐EIGEN_MAKE_ALIGNED_OPERATOR_NEW;VertexParams() = default;//默认构造函数bool read(std::istream & /*is*/) override {cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;return false;}bool write(std::ostream & /*os*/) const override {cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;return false;}void setToOriginImpl() override {cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;}//设置顶点估计值的更新void oplusImpl(const double *update) override {Eigen::Vector3d::ConstMapType v(update);_estimate += v;}
};

//按照图2的流程,需要从基类中继承,由于我们这里顶点只有一个,所以就选用一元边,
//那么就从一元边的基类BaseUnaryEdge中继承,然后重写其中的一些重要虚函数
class EdgePointOnCurve : public g2o::BaseUnaryEdge<1, Eigen::Vector2d, VertexParams> {
public://Eigen自动内存对齐EIGEN_MAKE_ALIGNED_OPERATOR_NEWEdgePointOnCurve() = default;//默认构造函数,比手动效率更高bool read(std::istream & /*is*/) override {cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;return false;}bool write(std::ostream & /*os*/) const override {cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;return false;}//	误差的计算函数void computeError() override {const VertexParams *params = dynamic_cast<const VertexParams *>(vertex(0));const double &a = params->estimate()(0);const double &b = params->estimate()(1);const double &lambda = params->estimate()(2);double fval = a * exp(-lambda * measurement()(0)) + b;_error(0) = std::abs(fval - measurement()(1));}
};

以上就定义完成了,曲线拟合任务优化的顶点和边

然后就需要将顶点和边添加到优化器中:

添加顶点

    VertexParams *params = new VertexParams();params->setId(0);//设置顶点编号// 设置顶点的初始估计值,相当于a, b, $\lambda$的初始估计值都为1params->setEstimate(Eigen::Vector3d(1, 1, 1)); optimizer.addVertex(params);//将顶点添加到优化器中

添加边

for (int i = 0; i < numPoints; ++i) {//新建一个边EdgePointOnCurve *e = new EdgePointOnCurve;e->setInformation(Eigen::Matrix<double, 1, 1>::Identity());//信息矩阵e->setVertex(0, params);//设置边对应的顶点e->setMeasurement(points[i]);//设置边的测量值optimizer.addEdge(e);}

然后就可以进行优化了,对应的代码如下:

    optimizer.initializeOptimization();//初始化整个优化器optimizer.optimize(maxIterations);//开始执行优化,迭代的次数为maxIterations//输出最终优化得到的结果
cout << params->estimate()[0] << ", "<< params->estimate()[1] << ", "<< params->estimate()[2] << endl;

1.98896, 0.406936, 0.201035

该结果与我们设置的真值:2,0.4,0.2,相差无几,对应的拟合曲线如下:
在这里插入图片描述

图3

以上就是一个完整的g2o优化方法的使用流程。下面我们来做一些更细致的探讨!

鲁棒核函数

我们看一下这种情况,假设现在散点中一个很离谱的错误点,如图4
在这里插入图片描述

图4

由于右上角那个离谱的点,导致优化时将整个函数被拉偏了(可以对比图3)。

那么怎么解决这种问题呢?g2o中提供了鲁棒核函数来抑制某些误差特别大的点,拉偏整个优化结果。

鲁棒核函数不是g2o独有的,这是非线性优化方法中的一种常用手段!

使用方法如下:

		//构造一个Huber鲁棒核函数g2o::RobustKernelHuber* robust_kernel_huber = new g2o::RobustKernelHuber;robust_kernel_huber->setDelta(0.3);//设置delta的大小。注意这个要根据实际的应用场景去尝试,然后选择合适的大小e->setRobustKernel(robust_kernel_huber);//向边中添加鲁棒核函数

g2o中提供了多种鲁棒核函数,你可以根据自己的需要进行选择。

加入鲁棒核函数之后,结果明显好转。
在这里插入图片描述

如果你不了解鲁棒核函数的作用,你需要查看一下资料去学习一下

信息矩阵
现在来考虑另一种情况,比方说在一次优化中,对于某一次测量,我们有十足的把握,它非常的准确,所以优化时我们希望对于这次测量给予更高的权重。
在这里插入图片描述
如上图,假设我们认为左上角那个异常点是一个比较正确的点(只是假设),我们希望拟合的曲线尽量往这个点偏移。那么我们就这可以设置这次测量边的权重更大。

代码如下:

e->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 10);

因为测量值的维度为1,所以信息矩阵也为1。如果我们把每一条边的信息矩阵都设置为一样,那么在优化时将认为所有边的优化权重是一样的,将不会对某一条边执行过多的优化!

对于那个异常点设置权重为别的点的10倍,则曲线会往右上角那个点靠。最终的结果如下图:
在这里插入图片描述

一般情况下,信息矩阵和鲁棒核函数都会一起使用!

完整代码

如果你觉得上面代码中很多细节难以理解,那你不必花太多时间去理解细节,先从整体上去理解g2o的用法,然后多尝试一些例子,你的疑惑就会迎刃而解了!

2.更复杂的应用

TODO

这篇关于非线性优化库g2o使用教程,探索一些常见的用法,以及信息矩阵、鲁棒核函数对于优化的结果的影响的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033713

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法