深度学习论文: DINOv2: Learning Robust Visual Features without Supervision

本文主要是介绍深度学习论文: DINOv2: Learning Robust Visual Features without Supervision,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文: DINOv2: Learning Robust Visual Features without Supervision
DINOv2: Learning Robust Visual Features without Supervision
PDF: https://arxiv.org/abs/2304.07193
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

提出一种自监督学习方法DINOv2,可在不需要微调的情况下,生成适用于各种图像分布和任务的通用视觉特征,使用精心筛选的大量图像数据进行预训练,并利用自动流程构建数据集以提高稳定性并加速训练。
在这里插入图片描述

2 Data Processing

本文创建了LVD-142M数据集,通过从大量未筛选的网络数据中挑选与现有筛选数据集相似的图像。数据管道包括筛选/未筛选数据源、图像去重和检索系统,直接处理图像,不依赖元数据或文本。
在这里插入图片描述
数据源包括多个筛选数据集如ImageNet,以及从公开网络爬取的未筛选图像。从网页中提取图像URL,并进行后处理,包括去重、过滤不当内容和模糊人脸,最终获得12亿张独特图像。

去重阶段使用现有技术移除近乎重复图像,提高数据多样性。自监督图像检索通过计算图像嵌入和余弦相似度,从未筛选数据中挑选与筛选数据集中图像接近的图像。

实现细节方面,使用Faiss库进行高效的索引和批量搜索最近嵌入,利用GPU加速处理,并通过计算集群在不到两天的时间内完成了LVD-142M数据集的生成。

3 Discriminative Self-supervised Pre-training

本文采用自监督学习方法来训练特征,结合了DINO、iBOT损失和SwAV居中。同时还加入了特征分散的正则化器和高分辨率训练阶段。

  • 图像级目标:计算学生和教师网络提取特征间的交叉熵损失,使用DINO头处理类标记,并通过softmax和居中处理得到损失项。

  • 补丁级目标:对学生网络的输入补丁进行随机遮蔽,应用iBOT头处理掩码标记,计算损失项。

  • 头权重解耦:DINO和iBOT损失使用独立的MLP头,避免参数共享。

  • Sinkhorn-Knopp居中:采用SwAV的居中方法进行批归一化。

  • KoLeo正则化:基于Kozachenko-Leonenko熵估计器,促使批次内特征均匀分布。

  • 分辨率调整:在预训练的最后阶段提高图像分辨率至518×518,以适应像素级任务需求。

4 Efficient implementation

在这里插入图片描述

为了在更大规模上训练模型,采用了以下改进措施:

  • 快速内存高效注意力:实现了改进版的FlashAttention,提高自注意力层的内存使用效率和速度。

  • 序列打包:采用序列打包技术,将不同长度的标记序列合并为一个长序列,提高训练效率。

  • 高效随机深度:改进随机深度实现,跳过丢弃残差的计算,节省内存和计算资源。

  • 全分片数据并行(FSDP):使用FSDP跨GPU分割模型副本,减少内存占用,提高计算效率和扩展性。

  • 模型蒸馏:对于较小模型,采用知识蒸馏方法,从最大的ViT-g模型中提取知识,而不是从头开始训练。

这些技术改进旨在提高大规模数据集上大型模型的训练效率,同时保持或提高最终模型的性能。通过蒸馏方法,即使是较小的模型也能获得与大型模型相似的性能。

5 Results

5-1 ImageNet Classification

在这里插入图片描述

5-2 Image and Video classification Benchmarks

在这里插入图片描述

5-3 Instance Recognition

在这里插入图片描述

5-4 Semantic segmentation

在这里插入图片描述

5-5 Depth estimation

在这里插入图片描述

这篇关于深度学习论文: DINOv2: Learning Robust Visual Features without Supervision的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033536

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.