【LangChain系列】第二篇:文档拆分简介及实践

2024-06-05 12:36

本文主要是介绍【LangChain系列】第二篇:文档拆分简介及实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一篇博客中,我们学习了如何使用LangChain的文档加载器将文档加载为标准格式。加载文档后,下一步是将它们拆分为更小的块。这个过程乍一看似乎很简单,但有一些微妙之处和重要的考虑因素会显着影响下游任务的性能和准确性。

一、为什么文档拆分很重要

文档拆分至关重要,因为它可以确保语义相关的内容在同一块中组合在一起。在回答问题或执行依赖于文档中存在的上下文信息的其他任务时,这一点尤为重要。
image.png

考虑以下示例:假设我们有一句关于丰田凯美瑞及其规格的句子。如果我们天真地拆分这个句子,而不考虑上下文,我们最终可能会得到一个包含句子部分的块和另一个包含剩余部分的块。因此,当试图回答有关凯美瑞规格的问题时,我们都不会在任何一个块中获得完整的信息,从而导致答案不正确或不完整。

二、文档拆分在LangChain中是如何工作的?

LangChain中所有文本拆分器的基础是将文本拆分为指定大小的块,相邻块之间有可选的重叠。下图对此进行了说明:
image.png

对应于每个块的大小,可以用字符或标记来衡量。这是在连续块之间共享的文本的一部分,允许跨块维护上下文boundaries.chunk_sizechunk_overlap。

三、文本拆分类型

LangChain提供了几种类型的文本拆分器,每种都有自己的优势和用例。以下是一些最常用的分离器:
image.png

1.CharacterTextSplitter

一个基本的拆分器,它基于单个字符分隔符(如空格或换行符)拆分文本。在处理结构不清晰的文本或想要在特定点拆分文本时,此拆分器非常有用。

2.RecursiveCharacterTextSplitter

用于通用文本拆分,它根据分隔符的层次结构拆分文本,从双换行符开始,然后是单换行符 、空格,最后是单个字符。这种方法旨在通过优先考虑段落和句子等自然边界的拆分来保持文本的结构和连贯性。RecursiveCharacterTextSplitternnn

3.TokenTextSplitter

根据标记计数而不是字符计数拆分文本,因为许多语言模型都具有由标记计数而不是字符计数指定的上下文窗口。标记的长度通常约为四个字符,因此基于标记计数进行拆分可以更好地表示语言模型将如何处理文本。TokenTextSplitter

4.MarkdownHeaderTextSplitter

旨在根据标题结构拆分 Markdown 文档。它将标头元数据保留在生成的块中,从而允许上下文感知拆分和使用文档结构的潜在下游任务。MarkdownHeaderTextSplitter

四、上手实例

让我们探索一些示例,以更好地了解这些文本拆分器的工作原理以及如何有效地使用它们。

1.设置环境

通过导入必要的库并加载 OpenAI API 密钥来设置环境:

import os
from langchain_openai import OpenAI
from dotenv import load_dotenv, find_dotenv_ = load_dotenv(find_dotenv())client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")
)

接下来,我们将导入两个最常用的文本拆分器:

from langchain_text_splitters import (CharacterTextSplitter,RecursiveCharacterTextSplitter,
)

2.使用CharacterTextSplitter和RecursiveCharacterTextSplitter拆分

让我们从定义一些示例开始,以了解这些分离器的工作原理:

chunk_size = 26
chunk_overlap = 4r_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
c_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)text1 = "abcdefghijklmnopqrstuvwxyz"
print(r_splitter.split_text(text1))  
# Output: ['abcdefghijklmnopqrstuvwxyz']text2 = "abcdefghijklmnopqrstuvwxyzabcdefg"
print(r_splitter.split_text(text2))  
# Output: ['abcdefghijklmnopqrstuvwxyz', 'wxyzabcdefg']text3 = "a b c d e f g h i j k l m n o p q r s t u v w x y z"
print(r_splitter.split_text(text3))  
# Output: ['a b c d e f g h i j k l m', 'l m n o p q r s t u v w x', 'w x y z']
print(c_splitter.split_text(text3))  
# Output: ['a b c d e f g h i j k l m n o p q r s t u v w x y z']# Set the separator for CharacterTextSplitter
c_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap, separator=" "
)
print(c_splitter.split_text(text3))  
# Output: ['a b c d e f g h i j k l m', 'l m n o p q r s t u v w x', 'w x y z']

这些示例演示了如何根据指定的 和 拆分文本,而如何基于单个字符分隔符(在本例中为空格)拆分文本。

3.真实示例

尝试拆分一些真实世界的例子:

some_text = """When writing documents, writers will use document structure to group content. \
This can convey to the reader, which idea's are related. For example, closely related ideas \
are in sentances. Similar ideas are in paragraphs. Paragraphs form a document. \n\n  \
Paragraphs are often delimited with a carriage return or two carriage returns. \
Carriage returns are the "backslash n" you see embedded in this string. \
Sentences have a period at the end, but also, have a space.\
and words are separated by space."""c_splitter = CharacterTextSplitter(chunk_size=450, chunk_overlap=0, separator=" ")
r_splitter = RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=0, separators=["\n\n", "\n", " ", ""]
)chunks = c_splitter.split_text(some_text)
print("Chunks: ", chunks)
print("Length of chunks: ", len(chunks))
# Chunks:  ['When writing documents, writers will use document structure to group content. This can convey to the reader, which idea's are related. For example, closely related ideas are in sentances. Similar ideas are in paragraphs. Paragraphs form a document. \n\n Paragraphs are often delimited with a carriage return or two carriage returns. Carriage returns are the "backslash n" you see embedded in this string. Sentences have a period at the end, but also,', 'have a space.and words are separated by space.']
# Length of chunks:  2chunks = r_splitter.split_text(some_text)
print("Chunks: ", chunks)
print("Length of chunks: ", len(chunks))
# Chunks:  ["When writing documents, writers will use document structure to group content. This can convey to the reader, which idea's are related. For example, closely related ideas are in sentances. Similar ideas are in paragraphs. Paragraphs form a document.", 'Paragraphs are often delimited with a carriage return or two carriage returns. Carriage returns are the "backslash n" you see embedded in this string. Sentences have a period at the end, but also, have a space.and words are separated by space.']
# Length of chunks:  2

在此示例中,它基于空格拆分文本,而第一个尝试拆分双换行符,然后是单换行符、空格,最后是单个字符。CharacterTextSplitterRecursiveCharacterTextSplitterCharacterTextSplitterRecursiveCharacterTextSplitter

我们还可以拆分真实世界的文档,例如 PDF 和 Notion 数据库:

from langchain.document_loaders import PyPDFLoader, NotionDirectoryLoader# Load a PDF document
loader = PyPDFLoader("docs/cs229_lectures/MachineLearning-Lecture01.pdf")
pages = loader.load()text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=150, length_function=len
)
docs = text_splitter.split_documents(pages)print("Pages in the original document: ", len(pages))
print("Length of chunks after splitting pages: ", len(docs))
# Pages in the original document:  22
# Length of chunks after splitting pages:  353

此代码使用 加载 PDF 文档,将页面拆分为较小的块,并打印原始页数和生成的块数。PyPDFLoaderCharacterTextSplitter

# Load a Notion database
loader = NotionDirectoryLoader("docs/Notion_DB")
notion_db = loader.load()docs = text_splitter.split_documents(notion_db)print("Pages in the original notion document: ", len(notion_db))
print("Length of chunks after splitting pages: ", len(docs))
# Pages in the original notion document:  52
# Length of chunks after splitting pages:  353

类似地,我们可以加载一个 Notion 数据库,将文档拆分为块,并打印原始文档的数量和生成的块。NotionDirectoryLoader

五、Token-based拆分

除了基于字符的拆分之外,LangChain还支持基于令牌的拆分,这在使用具有由令牌计数指定的上下文窗口的语言模型时非常有用:

from langchain.text_splitter import TokenTextSplittertext_splitter = TokenTextSplitter(chunk_size=1, chunk_overlap=0)
text1 = "foo bar bazzyfoo"
print(text_splitter.split_text(text1))  
# Output: ['foo', ' bar', ' b', 'az', 'zy', 'foo']text_splitter = TokenTextSplitter(chunk_size=10, chunk_overlap=0)
docs = text_splitter.split_documents(pages)
print(docs[0])  
# Output: Document(page_content='MachineLearning-Lecture01  \n', metadata={'source': 'docs/cs229_lectures/MachineLearning-Lecture01.pdf', 'page': 0})
print(pages[0].metadata)
# Output: {'source': 'docs/cs229_lectures/MachineLearning-Lecture01.pdf', 'page': 0}

在此示例中,我们使用 to 根据令牌计数拆分文本。我们可以调整 and 参数来控制拆分行为。TokenTextSplitterchunk_sizechunk_overlap

六、Context-aware拆分

LangChain还提供了上下文感知拆分的工具,旨在在拆分过程中保留文档结构和语义上下文。它根据文档的标题结构拆分 Markdown 文档,并将标题元数据保留在生成的块中:MarkdownHeaderTextSplitter

from langchain.document_loaders import NotionDirectoryLoader
from langchain.text_splitter import MarkdownHeaderTextSplittermarkdown_document = """# Title\n\n \
## Chapter 1\n\n \
Hi this is Jim\n\n Hi this is Joe\n\n \
### Section \n\n \
Hi this is Lance \n\n 
## Chapter 2\n\n \
Hi this is Molly"""headers_to_split_on = [("#", "Header 1"),("##", "Header 2"),("###", "Header 3"),
]markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
md_header_splits = markdown_splitter.split_text(markdown_document)print(md_header_splits[0])  
# Output: Document(page_content='Hi this is Jim  \nHi this is Joe', metadata={'Header 1': 'Title', 'Header 2': 'Chapter 1'})
print(md_header_splits[1])  
# Output: Document(page_content='Hi this is Lance', metadata={'Header 1': 'Title', 'Header 2': 'Chapter 1', 'Header 3': 'Section'})

在此示例中,我们定义一个带有标题的 Markdown 文档,并根据标题结构拆分文档。生成的块保留标头元数据,这对于利用文档结构的下游任务非常有用。MarkdownHeaderTextSplitter

我们还可以将此拆分器Notion 数据库:

loader = NotionDirectoryLoader("docs/Notion_DB")
docs = loader.load()
txt = " ".join([d.page_content for d in docs])headers_to_split_on = [("#", "Header 1"),("##", "Header 2"),
]
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
md_header_splits = markdown_splitter.split_text(txt)print(md_header_splits[0])

此代码加载一个 Notion 数据库,将文档内容联接到单个字符串中,拆分字符串,并打印第一个生成的块。MarkdownHeaderTextSplitter

小结

文档拆分是LangChain流水线中的关键步骤,因为它确保语义相关的内容在同一块中组合在一起。LangChain提供了各种文本拆分器,每个拆分器都有自己的优势和用例,允许您根据自己的特定需求选择最合适的拆分器。

无论您是处理通用文本、Markdown 文档、代码片段还是其他类型的内容,LangChain 的文本拆分器都提供了灵活性和自定义选项,可以有效地拆分您的文档。通过了解文档拆分中涉及的细微差别和注意事项,可以优化语言模型和下游任务的性能和准确性。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

这篇关于【LangChain系列】第二篇:文档拆分简介及实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033069

相关文章

MySQL 用户创建与授权最佳实践

《MySQL用户创建与授权最佳实践》在MySQL中,用户管理和权限控制是数据库安全的重要组成部分,下面详细介绍如何在MySQL中创建用户并授予适当的权限,感兴趣的朋友跟随小编一起看看吧... 目录mysql 用户创建与授权详解一、MySQL用户管理基础1. 用户账户组成2. 查看现有用户二、创建用户1. 基

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1