【动手学深度学习】多层感知机之暂退法研究详情

2024-06-05 08:44

本文主要是介绍【动手学深度学习】多层感知机之暂退法研究详情,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

🌊1. 研究目的

🌊2. 研究准备

🌊3. 研究内容

🌍3.1 多层感知机暂退法

🌍3.2 基础练习

🌊4. 研究体会


🌊1. 研究目的

  • 防止过拟合:权重衰减和暂退法都是用来控制模型的复杂度,防止模型在训练集上过拟合;
  • 提高模型泛化能力:通过在训练过程中应用权重衰减或暂退法,可以限制模型对训练数据的过度依赖,从而提高模型在未见过的测试数据上的泛化能力;
  • 研究正则化效果:权重衰减和暂退法都可以看作是对模型的正则化约束,通过实验可以研究不同的正则化方法对于模型训练和性能的影响;
  • 了解特征选择:通过应用权重衰减或暂退法,可以观察到一些权重变得非常小或接近于零。

🌊2. 研究准备

  • 根据GPU安装pytorch版本实现GPU运行研究代码;
  • 配置环境用来运行 Python、Jupyter Notebook和相关库等相关库。

🌊3. 研究内容

启动jupyter notebook,使用新增的pytorch环境新建ipynb文件,为了检查环境配置是否合理,输入import torch以及torch.cuda.is_available() ,若返回TRUE则说明研究环境配置正确,若返回False但可以正确导入torch则说明pytorch配置成功,但研究运行是在CPU进行的,结果如下:


🌍3.1 多层感知机暂退法

代码实现如下:

导入必要库及实现部分

import torch
from torch import nn
from d2l import torch as d2ldef dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return Xmask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
print(X)
print(dropout_layer(X, 0.))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1.))num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256dropout1, dropout2 = 0.2, 0.5class Net(nn.Module):def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,is_training = True):super(Net, self).__init__()self.num_inputs = num_inputsself.training = is_trainingself.lin1 = nn.Linear(num_inputs, num_hiddens1)self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)self.lin3 = nn.Linear(num_hiddens2, num_outputs)self.relu = nn.ReLU()def forward(self, X):H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))# 只有在训练模型时才使用dropoutif self.training == True:# 在第一个全连接层之后添加一个dropout层H1 = dropout_layer(H1, dropout1)H2 = self.relu(self.lin2(H1))if self.training == True:# 在第二个全连接层之后添加一个dropout层H2 = dropout_layer(H2, dropout2)out = self.lin3(H2)return outnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='mean')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

从零开始实现

import torch
from torch import nn
from d2l import torch as d2ldef dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return Xmask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
print(X)
print(dropout_layer(X, 0.))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1.))

定义模型参数

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256

定义模型

dropout1, dropout2 = 0.2, 0.5class Net(nn.Module):def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,is_training = True):super(Net, self).__init__()self.num_inputs = num_inputsself.training = is_trainingself.lin1 = nn.Linear(num_inputs, num_hiddens1)self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)self.lin3 = nn.Linear(num_hiddens2, num_outputs)self.relu = nn.ReLU()def forward(self, X):H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))# 只有在训练模型时才使用dropoutif self.training == True:# 在第一个全连接层之后添加一个dropout层H1 = dropout_layer(H1, dropout1)H2 = self.relu(self.lin2(H1))if self.training == True:# 在第二个全连接层之后添加一个dropout层H2 = dropout_layer(H2, dropout2)out = self.lin3(H2)return outnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)

训练和测试

num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='mean')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

简洁实现

net = nn.Sequential(nn.Flatten(),nn.Linear(784, 256),nn.ReLU(),# 在第一个全连接层之后添加一个dropout层nn.Dropout(dropout1),nn.Linear(256, 256),nn.ReLU(),# 在第二个全连接层之后添加一个dropout层nn.Dropout(dropout2),nn.Linear(256, 10))def init_weights(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, std=0.01)net.apply(init_weights);trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)


🌍3.2 基础练习

传送门:​​​​​​​​​​​​​​【动手学深度学习】多层感知机之暂退法问题研究详情


🌊4. 研究体会

通过这次研究,我深入学习了多层感知机,解决了分类和回归等问题。在本次实验中,使用Python编写了多层感知机模型,并分别应用了权重衰减和暂退法来观察它们对模型性能的影响。

首先,实现了一个简单的多层感知机模型,包括输入层、隐藏层和输出层。为了进行实验,选择了一个经典的分类问题数据集,并将其划分为训练集和测试集。接着定义了损失函数和优化器,并使用反向传播算法来更新模型的权重和偏置。

然后在暂退法实验中,设置了一个初始学习率和一个衰减系数,观察模型在不同学习率下的收敛速度和性能表现。实验结果表明,适当的暂退法可以加快模型的收敛速度,并提高模型的准确率。

通过本次实验,我深刻理解了权重衰减和暂退法对于多层感知机模型的重要性和影响。权重衰减技术可以通过惩罚大的权重值来控制模型的复杂度,防止过拟合;而暂退法技术可以通过逐渐减小学习率来提高模型的稳定性和收敛速度。

此外,观察到在实验中合适的超参数选择非常重要。对于暂退法技术,合适的初始学习率和衰减系数可以确保模型能在实验中有效地收敛并取得较好的性能。因此,超参数的选择是进行权重衰减和暂退法实验时需要仔细考虑和调优的关键因素之一。

通过观察模型的权重变化,我发现权重衰减和暂退法对特征选择起到了一定的作用。在应用权重衰减或暂退法后,一些权重值会趋近于零或变得非常小,这意味着这些特征对于模型的决策贡献较小。因此,可以根据权重的大小进行特征选择,从而提高模型的解释性和效果。

这篇关于【动手学深度学习】多层感知机之暂退法研究详情的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032608

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷