深度学习常见概念解释(二)—— 感受野:定义与计算公式

2024-06-05 08:36

本文主要是介绍深度学习常见概念解释(二)—— 感受野:定义与计算公式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

笔者在学习深度网络的过程中,发现感受野(Receptive Field)这个概念经常出现,且该概念在深度网络特征提取层的设计中至关重要,但其作用不易通过名字直接理解。因此,本文收集了相关信息,对感受野进行定义和解释,并通过公式和实例帮助读者更好地理解这一概念。

感受野的定义

感受野(Receptive Field)是神经网络中一个基本且重要的概念,尤其是在卷积神经网络(CNNs)中。它表示输入空间中一个像素影响输出空间中特定神经元的区域大小。具体解释为:在卷积神经网络中,感受野是指在输入图像上,一个神经元(或特征图中的一个元素)可以看到或响应的区域大小。更具体地说,感受野是指输入图像的一个区域,这个区域中的像素会影响到卷积层或池化层中特定位置的输出值。

感受野的重要性

  1. 特征提取能力:感受野越大,神经元可以看到的输入区域就越大,能够捕捉到更多的全局特征。
  2. 卷积层设计:了解感受野的大小有助于设计合适的卷积层、池化层和步幅,以确保网络能够有效地捕捉到输入图像的关键信息。
  3. 网络深度与宽度:感受野的大小与网络的深度和每层的卷积核大小相关,影响网络的整体结构设计。

感受野的计算

计算公式

一般情况下,对于任意层的感受野大小,可以使用以下公式递归计算:

R n = R n − 1 + ( k n − 1 ) ⋅ s n − 1 R_n = R_{n-1} + (k_n - 1) \cdot s_{n-1} Rn=Rn1+(kn1)sn1

其中:

  • R n R_n Rn 是第 n 层的感受野大小。
  • R n − 1 R_{n-1} Rn1 是第 n-1 层的感受野大小。
  • k n k_n kn 是第 n 层的卷积核大小。
  • s n − 1 s_{n-1} sn1 是第 n-1 层的步幅大小。

通过公式可知:感受野的计算取决于卷积层和池化层的排列方式、卷积核大小、步幅和填充方式。以下是一个简单的例子来说明如何计算感受野。

示例

假设一个简单的卷积神经网络有三层卷积,每层的卷积核大小为 3 × 3 3 \times 3 3×3,步幅为1,填充为1(即保持输出尺寸不变)。

  1. 第一层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 3 × 3 3 \times 3 3×3

  2. 第二层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 3 + ( 3 − 1 ) = 5 × 5 3 + (3 - 1) = 5 \times 5 3+(31)=5×5

  3. 第三层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 5 + ( 3 − 1 ) = 7 × 7 5 + (3 - 1) = 7 \times 7 5+(31)=7×7

总的来说,通过每层卷积核的计算,最终第三层的感受野为 7 × 7 7 \times 7 7×7,即输入图像中一个 7 × 7 7 \times 7 7×7 的区域会影响到第三层特征图中的一个神经元的输出。

通过这种递归计算方式,可以逐层计算网络中每个神经元的感受野,帮助设计和理解卷积神经网络的结构和特征提取能力。

总结

感受野是卷积神经网络中衡量每个神经元能够“看到”的输入图像区域的一个重要概念。理解和计算感受野有助于设计更有效的神经网络结构,提高特征提取的能力和模型的整体性能。

这篇关于深度学习常见概念解释(二)—— 感受野:定义与计算公式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032587

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作