深度学习常见概念解释(二)—— 感受野:定义与计算公式

2024-06-05 08:36

本文主要是介绍深度学习常见概念解释(二)—— 感受野:定义与计算公式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

笔者在学习深度网络的过程中,发现感受野(Receptive Field)这个概念经常出现,且该概念在深度网络特征提取层的设计中至关重要,但其作用不易通过名字直接理解。因此,本文收集了相关信息,对感受野进行定义和解释,并通过公式和实例帮助读者更好地理解这一概念。

感受野的定义

感受野(Receptive Field)是神经网络中一个基本且重要的概念,尤其是在卷积神经网络(CNNs)中。它表示输入空间中一个像素影响输出空间中特定神经元的区域大小。具体解释为:在卷积神经网络中,感受野是指在输入图像上,一个神经元(或特征图中的一个元素)可以看到或响应的区域大小。更具体地说,感受野是指输入图像的一个区域,这个区域中的像素会影响到卷积层或池化层中特定位置的输出值。

感受野的重要性

  1. 特征提取能力:感受野越大,神经元可以看到的输入区域就越大,能够捕捉到更多的全局特征。
  2. 卷积层设计:了解感受野的大小有助于设计合适的卷积层、池化层和步幅,以确保网络能够有效地捕捉到输入图像的关键信息。
  3. 网络深度与宽度:感受野的大小与网络的深度和每层的卷积核大小相关,影响网络的整体结构设计。

感受野的计算

计算公式

一般情况下,对于任意层的感受野大小,可以使用以下公式递归计算:

R n = R n − 1 + ( k n − 1 ) ⋅ s n − 1 R_n = R_{n-1} + (k_n - 1) \cdot s_{n-1} Rn=Rn1+(kn1)sn1

其中:

  • R n R_n Rn 是第 n 层的感受野大小。
  • R n − 1 R_{n-1} Rn1 是第 n-1 层的感受野大小。
  • k n k_n kn 是第 n 层的卷积核大小。
  • s n − 1 s_{n-1} sn1 是第 n-1 层的步幅大小。

通过公式可知:感受野的计算取决于卷积层和池化层的排列方式、卷积核大小、步幅和填充方式。以下是一个简单的例子来说明如何计算感受野。

示例

假设一个简单的卷积神经网络有三层卷积,每层的卷积核大小为 3 × 3 3 \times 3 3×3,步幅为1,填充为1(即保持输出尺寸不变)。

  1. 第一层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 3 × 3 3 \times 3 3×3

  2. 第二层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 3 + ( 3 − 1 ) = 5 × 5 3 + (3 - 1) = 5 \times 5 3+(31)=5×5

  3. 第三层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 5 + ( 3 − 1 ) = 7 × 7 5 + (3 - 1) = 7 \times 7 5+(31)=7×7

总的来说,通过每层卷积核的计算,最终第三层的感受野为 7 × 7 7 \times 7 7×7,即输入图像中一个 7 × 7 7 \times 7 7×7 的区域会影响到第三层特征图中的一个神经元的输出。

通过这种递归计算方式,可以逐层计算网络中每个神经元的感受野,帮助设计和理解卷积神经网络的结构和特征提取能力。

总结

感受野是卷积神经网络中衡量每个神经元能够“看到”的输入图像区域的一个重要概念。理解和计算感受野有助于设计更有效的神经网络结构,提高特征提取的能力和模型的整体性能。

这篇关于深度学习常见概念解释(二)—— 感受野:定义与计算公式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032587

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

java中long的一些常见用法

《java中long的一些常见用法》在Java中,long是一种基本数据类型,用于表示长整型数值,接下来通过本文给大家介绍java中long的一些常见用法,感兴趣的朋友一起看看吧... 在Java中,long是一种基本数据类型,用于表示长整型数值。它的取值范围比int更大,从-922337203685477

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python struct.unpack() 用法及常见错误详解

《Pythonstruct.unpack()用法及常见错误详解》struct.unpack()是Python中用于将二进制数据(字节序列)解析为Python数据类型的函数,通常与struct.pa... 目录一、函数语法二、格式字符串详解三、使用示例示例 1:解析整数和浮点数示例 2:解析字符串示例 3:解

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

MySQL 事务的概念及ACID属性和使用详解

《MySQL事务的概念及ACID属性和使用详解》MySQL通过多线程实现存储工作,因此在并发访问场景中,事务确保了数据操作的一致性和可靠性,下面通过本文给大家介绍MySQL事务的概念及ACID属性和... 目录一、什么是事务二、事务的属性及使用2.1 事务的 ACID 属性2.2 为什么存在事务2.3 事务