基于GraspNet熟悉点云抓取代码的处理逻辑

2024-06-05 06:36

本文主要是介绍基于GraspNet熟悉点云抓取代码的处理逻辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于GraspNet熟悉点云抓取代码的处理逻辑

目录

  • 基于GraspNet熟悉点云抓取代码的处理逻辑
    • 1.数据读取逻辑
      • 1.1GraspNet数据集的预览
      • 1.2xxx
      • 1.3get_item方法读取逻辑
      • 1.4结合相机内参将depth转点云
      • 1.5筛选有效的点云数据
      • 1.5随机采样

1.数据读取逻辑

1.1GraspNet数据集的预览

公开数据集下载完全如下,其中scenes为存放的数据集(RGB、D等),grasp_label为抓取的标签,collision_label为碰撞的标签。
在这里插入图片描述
scenes中一共有100个场景的文件夹:
在这里插入图片描述
每个场景中的文件如下,根据指定相机的品牌,决定使用哪个文件夹。
在这里插入图片描述
比如,我这里使用realsense相机,realsense文件夹里面存放的就是rgb、depth(深度)、label(mask)、meta(对应每一帧图片中物体的类别索引、物体的位置姿态、相机内参、深度图像中的像素值进行标准化或缩放的因子)等数据。
在这里插入图片描述

1.2xxx

1.3get_item方法读取逻辑

与我们常见的使用opencv读取RGB图不同,在点云处理中,常用PIL库以dtype=np.float32的形式读取RGB、D、mask,并对RGB进行/255.归一化操作。
在这里插入图片描述
这里RGB就是float32型,D就是int32型。
在这里插入图片描述
mask为uint8型。
在这里插入图片描述
随后。使用scipy库对.mat数据进行读取,分别获取对应每一帧图片中物体的类别索引、物体的位置姿态、相机内参、深度图像中的像素值进行标准化或缩放的因子。
在这里插入图片描述
对应每一帧图片中物体的类别索引如下,包含场景中每个物体的类别索引。
在这里插入图片描述
物体的位置姿态如下,每个维度的含义分别为:
3表示每个物体的姿态信息在三维空间中的三个分量;
4表示每个姿态的四元数表示法中的四个参数,用于描述物体的旋转;
9意味当前帧中对应着场景中的 9 个物体。
在这里插入图片描述
intrinsic 是一个 3x3 的矩阵。在计算机视觉中,相机内参通常以矩阵形式表示,这个矩阵通常称为相机的内部参数矩阵。
在这里插入图片描述

深度图像中的像素值通常是相机到场景中物体的距离,但这些距离通常以某种方式进行了标准化或缩放,factor_depth表示缩放因子。(这也是在实际场景中相机流的深度图要➗1000的原因)
在这里插入图片描述

1.4结合相机内参将depth转点云

其实就是将上述根据数据集中读取出来的相机参数传递 xmap = np.arange(camera.width)
ymap = np.arange(camera.height)
xmap, ymap = np.meshgri给CameraInfo类。再将这个类传递给create_point_cloud_from_depth_image函数。
记住,点云的数据格式其实就是:[N,3],N表示点的个数,3表示每个点有三个坐标,通常是 (x, y, z),分别表示点在三维空间中的位置。
以这里的相机分辨率为例,那就是求3个[720, 1280],再拼接就行。
Z方向最好求,就是将深度图➗1000(缩放因子就行)。
X、Y见下方代码注释。
最后点云数据就得到了,[720, 1280, 3]

class CameraInfo():""" Camera intrisics for point cloud creation. """def __init__(self, width, height, fx, fy, cx, cy, scale):self.width = widthself.height = heightself.fx = fxself.fy = fyself.cx = cxself.cy = cyself.scale = scaledef create_point_cloud_from_depth_image(depth, camera, organized=True):assert(depth.shape[0] == camera.height and depth.shape[1] == camera.width)#创建一个长度为相机宽度的数组,表示图像中每列的 x 坐标。xmap = np.arange(camera.width)#创建一个长度为相机高度的数组,表示图像中每列的 y 坐标。ymap = np.arange(camera.height)# 通过 meshgrid 函数创建网格,得到 (x, y) 坐标的矩阵,其中 xmap 是列索引的重复,ymap 是行索引的重复#xmap, ymap的size都是[7201280]xmap, ymap = np.meshgrid(xmap, ymap)#将深度值➗缩放因子points_z = depth / camera.scale#根据像素 x 坐标、相机的主点 cx 和焦距 fx 计算每个点云点的 x 坐标。points_x = (xmap - camera.cx) * points_z / camera.fx#根据像素 y 坐标、相机的主点 cy 和焦距 fy 计算每个点云点的 y 坐标。points_y = (ymap - camera.cy) * points_z / camera.fycloud = np.stack([points_x, points_y, points_z], axis=-1)if not organized:cloud = cloud.reshape([-1, 3])return cloudcamera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], factor_depth)# generate cloud
cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)

在这里插入图片描述

1.5筛选有效的点云数据

获得根据深度图以及相机参数得到的点云数据后,先根据分割的mask获取工作区域的掩码,并结合有效深度值区域综合获得有效工作区域,最后获得效的点云数据和对应的标签以及颜色信息。

def get_workspace_mask(cloud, seg, trans=None, organized=True, outlier=0):if organized:#将点云和分割标签转换为一维数组h, w, _ = cloud.shapecloud = cloud.reshape([h*w, 3])seg = seg.reshape(h*w)if trans is not None:#将点云数据从相机坐标系转换到工作台cloud = transform_point_cloud(cloud, trans)#取分割标签为正值(非背景)的点云作为前景点云foreground = cloud[seg>0]#计算前景点云的最小和最大坐标值,得到一个表示工作空间范围的边界框。xmin, ymin, zmin = foreground.min(axis=0)xmax, ymax, zmax = foreground.max(axis=0)#根据边界框和离群点阈值,生成用于筛选工作空间内点云的掩码mask_x = ((cloud[:,0] > xmin-outlier) & (cloud[:,0] < xmax+outlier))mask_y = ((cloud[:,1] > ymin-outlier) & (cloud[:,1] < ymax+outlier))mask_z = ((cloud[:,2] > zmin-outlier) & (cloud[:,2] < zmax+outlier))workspace_mask = (mask_x & mask_y & mask_z)if organized:workspace_mask = workspace_mask.reshape([h, w])return workspace_mask# get valid points
#选出有效的点云数据和对应的标签以及颜色信息
depth_mask = (depth > 0)
seg_mask = (seg > 0)
if self.remove_outlier:camera_poses = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'camera_poses.npy'))align_mat = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'cam0_wrt_table.npy'))trans = np.dot(align_mat, camera_poses[self.frameid[index]])workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02)mask = (depth_mask & workspace_mask)
else:mask = depth_mask
cloud_masked = cloud[mask]
color_masked = color[mask]
seg_masked = seg[mask]

1.5随机采样

点云数据的点个数一般会比较多,这里就通过随即采样,选取20000个点。

# sample points
if len(cloud_masked) >= self.num_points:idxs = np.random.choice(len(cloud_masked), self.num_points, replace=False)
else:idxs1 = np.arange(len(cloud_masked))idxs2 = np.random.choice(len(cloud_masked), self.num_points-len(cloud_masked), replace=True)idxs = np.concatenate([idxs1, idxs2], axis=0)
cloud_sampled = cloud_masked[idxs]
color_sampled = color_masked[idxs]
seg_sampled = seg_masked[idxs]
objectness_label = seg_sampled.copy()
objectness_label[objectness_label>1] = 1

在这里插入图片描述

这篇关于基于GraspNet熟悉点云抓取代码的处理逻辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032325

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

requests处理token鉴权接口和jsonpath使用方式

《requests处理token鉴权接口和jsonpath使用方式》文章介绍了如何使用requests库进行token鉴权接口的处理,包括登录提取token并保存,还详述了如何使用jsonpath表达... 目录requests处理token鉴权接口和jsonpath使用json数据提取工具总结reques

Springmvc常用的注解代码示例

《Springmvc常用的注解代码示例》本文介绍了SpringMVC中常用的控制器和请求映射注解,包括@Controller、@RequestMapping等,以及请求参数绑定注解,如@Request... 目录一、控制器与请求映射注解二、请求参数绑定注解三、其他常用注解(扩展)四、注解使用注意事项一、控制

C# 空值处理运算符??、?. 及其它常用符号

《C#空值处理运算符??、?.及其它常用符号》本文主要介绍了C#空值处理运算符??、?.及其它常用符号,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、核心运算符:直接解决空值问题1.??空合并运算符2.?.空条件运算符二、辅助运算符:扩展空值处理