计算机视觉全系列实战教程:(七)opencv的improc模块基本介绍

本文主要是介绍计算机视觉全系列实战教程:(七)opencv的improc模块基本介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.颜色转换

  • A.函数转换函数原型:
void cv::cvtColor(cv::InputArray src, // 输入序列cv::OutputArray dst, // 输出序列int code, // 颜色映射码int dstCn = 0 // 输出的通道数 (0='automatic')
);
  • B.基本使用:
cv::Mat imGray;
cv::cvtColor(imBGR, imGray, cv::COLOR_BGR2GRAY); //转为灰度图像
cv::Mat imHsv;
cv::cvtColor(imBGR, imHsv, cv::COLOR_BGR2HSV); //转为HSV图像
  • C.参数介绍:
// BGR和RGB相互转换
cv::COLOR_BGR2RGB
cv::COLOR_RGB2BGR
cv::COLOR_RGBA2BGRA
cv::COLOR_BGRA2RGBA
// 添加和去除alpha通道
cv::COLOR_BGR2BGRA
cv::COLOR_RGB2RGBA
cv::COLOR_BGRA2BGR
cv::COLOR_RGBA2RGB

2.绘制基本图形

(1)绘制矩形

void cv::rectangle	(	InputOutputArray 	img, //在img中绘制矩形Point 	PLeftTop, //矩形的左上角Point 	PRgtBtm, //矩形的右下角const Scalar & 	color, //矩形框的颜色int 	thickness = 1, //线的宽度int 	lineType = LINE_8, //线的类型int 	shift = 0 //坐标中的小数位数
)

(2)绘制圆形

void circle( Mat img, cv::Point center, //圆形int radius, //半径cv::Scalar color, //圆形线条的颜色 int thickness=1,  //圆形线条的宽度,负数表示填充,正数表示宽度int line_type=8, //线条的种类int shift=0 //圆心和半径的小数位数);

(3)绘制椭圆

void ellipse(Mat img,Point PCenter, //椭圆中心Size size, //长轴和短轴的长度double angle, //椭圆旋转角度double startAngle, //开始角度double endAngle, //终止角度Scalar &color, //椭圆线条的颜色int thickness = 1, //椭圆线条的宽度,负数表示填充int line_type = 8, //线条类型int shift = 0 //圆心和轴坐标的精度(小数的位数))

(4)绘制线段

void line(Mat img,Point PStart, //线段起点坐标Point PEnd, //线段终点坐标Scalar &color, //线段颜色int thichness = 1, int line_type = 8, int shift =  0)

(5)绘制文字

void putText(Mat &img,const string &text,Point POrigin, //文本框的左下角int fontFace, //字体,如FONT_HERAHEY_PLAINdouble fontScale, //尺寸因子,越大则文字越大Scalar color, //文字颜色int thickness = 1, //线条粗细int lineType = 8, //线条类型(8邻域和4领域)boo

3.随机数使用

  • (1)基本用法
//创建RNG对象 RNG rng(uint64 seed);
cv::RNG rng(time(NULL));
int iNum01 = rng; //返回第一个随机数
int iNum02 = rng.next(); //返回下一个随机数
int iNum03 = rng.operator()(); //等价于next()
int iNum04 = rng.operator()(100); //[0,100)范围内的随机数
double dNum05 = rng.operator double(); //返回下一个double数值
  • (2)生成分布数据
double a = rng.uniform(0,1);//产生一个均匀分布的double数据
double b = rng.gaussian(0.f, 1.f);//高斯分布的double数据,均值为0,方差为1.0

(3)使用随机数填充矩阵

  • A.函数原型
void fill(Mat img,int distType, //均匀分布(UNIFORM),高斯分布(NORMAL)InputArray a, InputArray b, //与对应的分布有关,如均匀分布表示均匀分布的区间bool saturateRange = false //只针对均匀分布有效);
  • B.使用方法
// 均匀分布cv::Mat_<double> matTmp(5, 5);cv::RNG rng;rng.fill(matTmp, cv::RNG::UNIFORM, 1 , 3);
// 正态分布
cv::Mat_<float> matTmp02(5, 5);
rng.fill(matTmp02, cv::RNG::NORMAL, 1, 3);

4.为图像添加边框

  • A.函数原型
void copyMakeBorder(cv::Mat &imSrc, //输入图像cv::Mat &imDst, //输出图像int top, //顶部填充像素数量int bottom,int left, int right,int borderType, //填充类型,如BORDER_REPLICATE, BORDER_REFLECT_101, BORDER_CONSTANT等const Scalar &value = Scalar() //默认值即可);
  • B.参数介绍(borderType)
		BORDER_CONSTANT    = 0, //!< `iiiiii|abcdefgh|iiiiiii`  with some specified `i`BORDER_REPLICATE   = 1, //!< `aaaaaa|abcdefgh|hhhhhhh`BORDER_REFLECT     = 2, //!< `fedcba|abcdefgh|hgfedcb`BORDER_WRAP        = 3, //!< `cdefgh|abcdefgh|abcdefg`BORDER_REFLECT_101 = 4, //!< `gfedcb|abcdefgh|gfedcba`BORDER_TRANSPARENT = 5, //!< `uvwxyz|abcdefgh|ijklmno`

5.查找轮廓

(1)概述

对灰度图像、二值图像进行边缘提取(通常是二值图像)进行轮廓提取。

void findContours(Mat &imGray, //单通道图像vector<vector<Point>> &vCntsOut, //轮廓组(输出参数)OutputArray &hierarchy, //包含抽取图像的拓扑信息int mode, //轮廓提取模式,如CV_RETR_EXTERNAL, CV_RETR_LIST, CV_RETR_CCOMP等int method, //轮廓的近似方法,如CV_CHAIN_APPROX_NONE, CV_CHAIN_APPROX_SIMPLE等Point offset=Point() //轮廓的偏移量);

(2)使用

//读取图像
cv::Mat imRead = cv::imread("xxx.jpeg");
//高斯去噪
cv::GaussianBlur(imread, imread, cv::Size(3,3), 0);
//提取图像边缘
cv::Mat imEdge;
cv::Canny(imRead, imEdge, 30, 100);
//提取轮廓
std::vector<std::vector<cv::Point>> vCnts;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(imEdge,vCnts,hierarchy,RETR_TREE,CHAIN_APPROX_SIMPLE);

(3)绘制轮廓

void cv::drawContours(cv::Mat &imSrc,InputArrayOfArrays vCnts,int contourIdx, //绘制轮廓向量中哪一个索引,负数表示绘制所有轮廓const cv::Scalar &color, //绘制的颜色int thickness = 1, //宽度,负数表示填充轮廓int lineType =8, InputArray hierarchy = noArray(), //findContours输出的向量int maxLevel = INT_MAX, //绘制轮廓的最高等级,有heirarchy时才生效cv::Point offset);

这篇关于计算机视觉全系列实战教程:(七)opencv的improc模块基本介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031912

相关文章

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测