太极图形课——渲染——光线追踪实战第一部分呢

2024-06-05 01:12

本文主要是介绍太极图形课——渲染——光线追踪实战第一部分呢,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

根据概念部分我们逐步通过太极实现光线追踪

总共可以分为5步

第一步:如何发射出一道光?

首先明确何为一道光,光从我们眼睛(摄像机)射出,那么在三维虚拟世界里,我们可以认为这道光就是一条射线,在三维世界里,一条射线可以由一个点和一个向量定义

任何在这条射线上的点,我们都可以用一个标量t来表示,这个标量的值代表了这个点到射出去的原点的距离

那么我们如何把这样一条射线放进我们所定义的虚拟世界中呢,首先需要设定的就是在这个虚拟世界中我们眼睛(摄像机)的位置,这个位置通过三维世界的坐标一个三维的数组就可以表达了,第二就是定义我们看的方向,也就是方向向量,也通过一个三维的数组表达

在概念中说,最后我们要将三维的物体投影在眼前的屏幕上就可以了,那么我们就需要放置屏幕,我们所看的方向穿过这个屏幕的中心,这个屏幕垂直于我们的视线

现在屏幕的位置还没有确定,首先我们需要确定屏幕和我们眼睛的距离,再确定屏幕屏幕的方向,我们设定一个三维向量来确定,最后就是屏幕的大小,这个我们通过设定一个fov来表示

通过fov可以求出屏幕的半宽和半长,宽由长决定,取决于你需要几比几的屏幕,例如16:9,有了这些我们设定一个以屏幕中心为原点的坐标系uvw,最后可以确定眼睛或者说摄像机左下角出发的点,并确定其水平和垂直的向量

此时我们就已经准备好发射射线

#首先定义一个世界坐标系,其中有眼睛或者说摄像机的位置
lookfrom[None] = [x,y,z]
#定义朝向
lookat[None] = [x,y,z]
#定义屏幕和其中心点
theta = 1.0/3.0 *pi #fov设置
half_height = ti.tan(theta/2.0) *distance
half_width = aspect_ratio * half_height * distance
w = (lookfrom[None] - lookat[None]).normalized()
u = (upp[None].cross(w)).normalized()
v = w.cross(u)
#可以得到屏幕的视点位置
cam_lower_left_corner[None] = (lookfrom[None] - half_width*u - half_height *v - w)*distance 
cam_horizational[None] = 2* half_width * u * distance 
cam_vertical[None] = 2 * half_height * v *distance
#发射光线
u = float(j)/res_x
v = float(i)/res_Y
ray.direction = cam_lower_left_corner[None] + u * cam_horizational[None] + v * cam_vertical[None] - lookfrom[None]
#pixel块是一个像素点方块,我们可以将其放在正中间
u = float(i + 0.5)/res_x
v = float(j + 0.5)/res_y

由于像素是一个方块,我们还可以把这个射线正好移动到点的中心

第二步: 如何将光和物体求交

之前已经了解到一个视线由一个射线表示,射线上的每一个点可以通过一个标量t来表示,那么怎么实现物体和实现的求交呢,对于一个圆来说。我们可以将圆用一个参数方程来表示,然后将点用t来代替我们就可以得到下列的方程

将方程简化就可以获得一个一元二次方程

通过求根公式韦达定理,可以判断是否有相交,相交的点是哪一个,我们需要去第一个正根,在计算机中由于有时候会出现0.0001这种明显是物体没有相交而是反射的正根,因此需要添加一个门槛,例如正根至少要大于0.001

目前教程所给代码中仅仅只实现了与圆的相交,实际上还可以实现和平面,三角形实现相交,例如对于一个平面来说,我们

的参数方程可以定义为平面上任意两个点所构成的向量和平面的法向量垂直,也就是点乘为0,将任意一点用视线的点代替

可以获得的根的方程为向量d和法向量点乘不为0,也就是这两个方向不垂直的时候,一定有一个点

如果为点乘为0,也分为从平面出发导致与平面重合以及不从平面出发,永远没有交点

进一步如何判断有点的话是否该点在三角形内

此时需要引入的概念是重心的概念,具体概念如下图,三个三角形的面积相加等于整个三角形说明这个点在三角形内

这个重心的概念可以推广到四面体上

此时就可以判断三角形网格的相交了

最后可以得到两种方法,一种是隐式积分,找到面的定义,将点的定义代入其中,最后得到一个高纬的方程,简化后都是一个一元二次方程,第二种方法遍历全部的三角形面片,找到点在哪个三角形里面

这篇关于太极图形课——渲染——光线追踪实战第一部分呢的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1031659

相关文章

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R