AVL树的介绍与实现

2024-06-04 23:28
文章标签 实现 介绍 avl

本文主要是介绍AVL树的介绍与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

我们上一期介绍了二叉搜索树并做了实现,本期我们来继续学习另一个更优的树即AVL树!

本期内容介绍

什么是AVL树?

AVL树的实现

AVL树的性能分析

在正式的介绍AVL树之前,我们先来回忆一下二叉搜索树的特点左子树的值一定小于根节点的值,右子树的值一定大于根节点的值;基于他的这个特点,可以缩短查找的区间即可以提升查找的效率!但是他在有些情况下效率并不是很好。例如:当数据是有序或接近有序时,查找得需要O(N)的时间复杂度即退化成单链就和和链表一样了,效率不太好!为了解决这个问题,有人就提出了AVL树!

什么是AVL树?

为了解决二叉搜索树的弊端,在1962年来自俄罗斯的两位数学家G.M.Adelson-Velskii和E.M.Landis研究出了一种解决上述问题的方法:当向二叉树种插入新节点时,如果保每个节点的左右子树的高度的绝对值之差不超过1(如果超过了1需要内部调整)既可以降低树的高度,从而减少平均查找长度!符合这样的二叉搜索树就叫做平衡二叉搜索树即AVL树。也就是:

一颗AVL树要么是空树要么是符合下面性质的二叉搜索树:

该二叉搜索树的左右子树都是AVL树;

它的左右子树高度差(简称平衡因子)的绝对值不超过1(-1/0/1);

平衡因子可以是左减右,也可以右减左;这里采用后者!

所以,下面这棵二叉搜索树就是一个AVL树:

AVL树的实现

还是和以前一样先搭个架子出来,多次用到节点的开辟等操作,所以我们创建一个专门的AVL节点类!在创建一个AVL树的类用于插入查找等操作!

template<class K, class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;//左子节点AVLTreeNode<K, V>* _right;//右子节点AVLTreeNode<K, V>* _parent;//父节点pair<K, V> _kv;int _bf;//平衡因子AVLTreeNode(const pair<K,V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_bf(0)//默认一个新节点是叶子节点,左右子树都为空所以高度差(平衡因子)为0{}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:private:Node* _root = nullptr;//这里只有一个成员可以给一个缺省值就不用写构造函数了
};

AVL树的插入

AVL树的本质还是二叉搜索树,所以插入的时候还是遵循二叉搜索树的特点的!但是多了一个平衡因子,所以他的插入是分为两步的:

1、按照二叉搜索树的规则插入

2、调节平衡因子

前者很好理解,这里主要解释一下后者:我们采用的平衡因子的方式是右子树的高度 - 左子树高度所以当新插入节点后,要更新其父先节点的平衡因子,如果插入的节点是在parent的左,平衡因子--; 如果是右平衡parent的因子++;

1、如果更新后父节点的平衡因子是0,即原先的parent左或右是有一个孩子的,现在是插入到原先没有孩子的那边了即平衡了,此时直接结束调节平衡因子;

2、如果更新parent的平衡因子后不是0,而是-1/1则需要继续向上更新!(直到cur更新到根节点,停止)

3、如果更新后父节点的平衡因子的绝对值超过了1就要旋转。(旋转后面单独介绍)

OK,举个例子:

这里咱们先暂时不管旋转是怎么旋转的,我们先把上一般的给搞出来:

bool Insert(const pair<K, V>& kv)
{Node* parent = nullptr;//记录插入位置的父节点Node* cur = _root;//当前插入节点//第一次插入if (_root == nullptr){_root = new Node(kv);return true;}//不是第一次插入,寻找插入位置while (cur){if (cur->_kv.first < kv.first)//插入节点的键值比当前比较的节点的键值大{parent = cur;cur = cur->_right;//去当前节点的右子树查找}else if(cur->_kv.first > kv.first)//插入节点的键值比当前比较的节点的键值小{parent = cur;cur = cur->_left;//去当前节点的左子树查找}else{return false;//要插入的节点存在}}cur = new Node(kv);//找到插入位置//判断是parent的左子树还是右子树if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//将当前节点的父节点设置是为parent//调节平衡因子 ---> bf = right - leftwhile (parent){//更新当前节点的父节点的平衡因子if (cur == parent->_left)//在parent的左{parent->_bf--;//bf--}else{parent->_bf++;//在parent的右, bf++}if (parent->_bf == 0)//如果更新完,cur的parent的bf,发现是0。说明是 -1/1 --> 0 即parent原先左或右是有一个孩子的{break;//更新结束}else if (parent->_bf == 1 || parent->_bf == -1)//如果是parent的bf是1/-1{cur = parent;parent = parent->_parent;//需要继续更新其祖先节点}else{//此时parent的bf是-2/2需要旋转break;//旋转结束跳出平衡因子的调节}}return true;//插入成功
}

OK,先来验证一下,目前的逻辑对不对?AVL树的本质还是搜索树,所以他的中序是有序的,所以可以通过走中序验证目前的对不对:

中序遍历

实现思路:左->中->右

注意:由于AVL树的根节点是私有的,类的外面是访问呢不到的,所有以下三种思路:

1、将中序设置为友元(强烈推荐)

2、提供get和set函数

3、通过子函数(推荐)

void _InOrder(const Node* root)
{if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);
}

这是子函数,因为只有AVL类里面专用所以可以将它设置为私有的!

OK,就以上面介绍过的为例:

我们乱序插入到当前的AVL树中,如果中序是有序的说明我们的当前逻辑是对的!

OK,现在parent的bf==1/-1以及等于0的情况解决了,剩下的就是parent的bf是-2/2的情况了,此时就需要旋转了!我们下面来专门谈一谈旋转!

AVL树的旋转

旋转是由于parent的bf到了-2/2,此时的结构不符合AVL的平衡了;而parent为-2/2是由其孩子造成的,而孩子有两种情况即左边和右边即cur是-1/1;所以此时就有四种情况:
1、parent == -2 && cur == -1即父亲的左边高、孩子(左子树)的左边高 --> 右单旋

2、parent == 2  && cur == 1即父亲的右边高、孩子(右子树)的右边高 --> 左单旋

3、parent == -2 && cur == 1即父亲的左边高、孩子(左子树)的右边高 --> 左右双旋

4、parent == 2  && cur == -1即父亲的右边高、孩子(右子树)的左边高 --> 右左双旋

右单旋

parent的左边高,并且他的左孩子也高!

void RotateR(const Node* parent)
{Node* subL = parent->_left;//parent的左子树parent->_left = subL->_right;//将subL的又给parent的左if (subL->_right)//如果subL的右不为空subL->_right = parent;//此时subL右的父节点就是parentNode* ppNode = parent->_parent;//记录parent的父节点方便后面subL不是root时候的链接subL->_right = parent;//将parent连接到subL的右边parent->_parent = subL;//将parent的父节点设置为subLif (parent == _root)//当前的parent是根节点{_root = subL;//新的根节点就是subLppNode = nullptr;//根节点的父亲为空}else//当前的parent不是根节点{if (ppNode->_left == parent)//如果parent的是ppNode的左{ppNode->_left = subL;//将subL连接到ppNode的左边}else//parent的是ppNode的右{ppNode->_right = subL;//将subL连接到ppNode的右边}subL->_parent = ppNode;//subL的父节点指向ppNode}subL->_bf = parent->_bf = 0;//右单旋后subL和parent的bf都是0
}

左单旋

parent的右边高,并且他的右孩子也高!

void RotateL(const Node* parent)
{Node* subR = parent->_right;//parent的右子树parent->_right = subR->_left;//将subR的左子树给parent的右if (subR->_left)//如果subR的左不为空subR->_left->_parent = parent;//subR的左的父亲就是parentNode* ppNode = parent->_parent;//记录parent的父节点方便后面subL不是root时候的链接subR->_left = parent;//将parent连接到subR的左parent->_parent = subR;//parent的父节点就是subRif (parent == _root)//parent是根节点{_root = subR;//此时subR就是新的根_root->_parent = nullptr;}else//parent不是根节点{if (ppNode->_left == parent)//parent是ppNode的左{ppNode->_left = subR;//将subR连接到ppNode的左}else//parent是ppNode的右{ppNode->_right = subR;//将subR连接到ppNode的右}subR->_parent = ppNode;//subR的父节点指向ppNode}subR->_bf = parent->_bf = 0;//左单旋后subR和parent的bf都是0
}

左右双旋

parent的左孩子高,并且他左孩子的右边高!

void RotateLR(const Node* parent)
{Node* subL = parent->_left;//左子树Node* subLR = subL->_right;//左子树的右子树int bf = subLR->_bf;RotateL(parent->_left);//先对左子树左旋RotateR(parent);//在对整个树进行右旋if (bf == 0){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 0;}else if (bf == 1){subL->_bf = -1;subLR->_bf = 0;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 1;}else{assert(false);//正常不可能到这,这里是防止一开始就不是AVL}
}

右左双旋

parent的右孩子高,他的右孩子的左边高!

void RotateRL(const Node* parent)
{Node* subR = parent->_right;//右子树Node* subRL = subR->_left;//右子树的左子树int bf = subRL->_bf;RotateR(parent->_right);//先对右子树右旋RotateL(parent);//在对整个树进行左旋if (bf == 0){subR->_bf = 0;subRL->_bf = 0;parent->_bf = 0;}else if (bf == 1){subR->_bf = 0;subRL->_bf = 0;parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;subRL->_bf = 0;parent->_bf = 1;}else{assert(false);//正常不可能到这,这里是防止一开始就不是AVL}
}

ok,这就是所有的情况,我们现在加上旋转来看看,为了验证是否是平衡的,我们可以写一个判断是否平衡的函数:

判断平衡

实现思路:某一个节点的左右子树的差的绝对值不可以超多1

由于AVLTree类外面访问不到根,所以我们还是写成子函数的形式:
 

bool _IsBalance(const Node* root)
{if (root == nullptr)//空树也平衡return true;int left = _Hight(root->_left);//求左子树的高度int right = _Hight(root->_right);//求右子树的高度if (abs(left - right) >= 2)//如果左右子树的高度差的绝对值差超过1则就是不平衡return false;if (right - left != root->_bf)//不平衡,打印出他的节点的key值{cout << root->_kv.first << endl;return false;}return _IsBalance(root->_left) && _IsBalance(root->_right);//左右子树都得平衡
}int _Hight(Node* root)
{if (root == nullptr)//空树的个数是0return 0;return max(_Hight(root->_left), _Hight(root->_right)) + 1;//不是空返回左右子树的较大值 + 本身
}

ok ,验证一下:

OK,没有问题!我们再来把其他的完善一下:

AVL树的查找

实现思路:和二叉搜索树的一样,比根的去右边找,比根小去左边找!

Node* Find(const K& k)
{Node* cur = _root;while (cur){if (cur->_kv.first < k)//插入节点的键值比当前比较的节点的键值大{cur = cur->_right;//去当前节点的右子树查找}else if (cur->_kv.first > k)//插入节点的键值比当前比较的节点的键值小{cur = cur->_left;//去当前节点的左子树查找}else{return cur;//找到了}}return nullptr;//没找到
}

获取高度

实现思路:左子树 + 右子树 + 1(本身)

int _Hight(Node* root)
{if (root == nullptr)//空树的个数是0return 0;return max(_Hight(root->_left), _Hight(root->_right)) + 1;//不是空返回左右子树的较大值 + 本身
}

获取节点个数

实现思路:左子树的节点 + 右子树的节点 + 根

int _Size(const Node* root)
{if (root == nullptr)//空树return 0;return _Size(root->_left) + _Size(root->_right) + 1;//左子树+右子树+本身
}

AVL树的性能分析

AVL树是一颗绝对平衡的二叉搜索树,其要求每个节点的左右子树差都不超过1,这样可以保证查询高效的同时复杂度不会达到和二叉搜索树的极端情况的O(N)而是在logN;但是如果对AVL树做一些结构的修改,例如:插入太多次旋转也就多了,更差的是在删除时有可能旋转到根;因此如果需要一种查询且有序的数据结构,再者数据为静态的(不会改变)AVL树是一种不错的选择,但是如果经常修改其行能就不太好了,那要是既要改变还要效率高该如何弄呢?那就是下期介绍的红黑树了!!!

全部源码

#pragma once
#include <assert.h>template<class K, class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;//左子节点AVLTreeNode<K, V>* _right;//右子节点AVLTreeNode<K, V>* _parent;//父节点pair<K, V> _kv;int _bf;//平衡因子AVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _bf(0)//默认一个新节点是叶子节点,左右子树都为空所以高度差(平衡因子)为0{}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){Node* parent = nullptr;//记录插入位置的父节点Node* cur = _root;//当前插入节点//第一次插入if (_root == nullptr){_root = new Node(kv);return true;}//不是第一次插入,寻找插入位置while (cur){if (cur->_kv.first < kv.first)//插入节点的键值比当前比较的节点的键值大{parent = cur;cur = cur->_right;//去当前节点的右子树查找}else if (cur->_kv.first > kv.first)//插入节点的键值比当前比较的节点的键值小{parent = cur;cur = cur->_left;//去当前节点的左子树查找}else{return false;//要插入的节点存在}}cur = new Node(kv);//找到插入位置//判断是parent的左子树还是右子树if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//将当前节点的父节点设置是为parent//调节平衡因子 ---> bf = right - leftwhile (parent){//更新当前节点的父节点的平衡因子if (cur == parent->_left)//在parent的左{parent->_bf--;//bf--}else{parent->_bf++;//在parent的右, bf++}if (parent->_bf == 0)//如果更新完,cur的parent的bf,发现是0。说明是 -1/1 --> 0 即parent原先左或右是有一个孩子的{break;//更新结束}else if (parent->_bf == 1 || parent->_bf == -1)//如果是parent的bf是1/-1   0 ---> -1/1{cur = parent;parent = parent->_parent;//需要继续更新其祖先节点}else//此时parent的bf是-2/2需要旋转 -1/1 --> 2/-2{if (parent->_bf == -2 && cur->_bf == -1)//父亲和孩子的左边都高,右单旋{RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == 1)//父亲和孩子的右边都高,左单旋{RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == 1)//父亲的左边高,孩子的右边高,先左单旋,在右单旋{RotateLR(parent);}else if (parent->_bf == 2 && cur->_bf == -1)//父亲的右边高,孩子的左边高,先右单旋,在左单旋{RotateRL(parent);}else{assert(false);//正常情况不可能走到这里,这里是防止一开始就不是AVL树的情况}break;//旋转结束跳出平衡因子的调节}}return true;//插入成功}Node* Find(const K& k){Node* cur = _root;while (cur){if (cur->_kv.first < k)//插入节点的键值比当前比较的节点的键值大{cur = cur->_right;//去当前节点的右子树查找}else if (cur->_kv.first > k)//插入节点的键值比当前比较的节点的键值小{cur = cur->_left;//去当前节点的左子树查找}else{return cur;//找到了}}return nullptr;//没找到}void InOrder(){return _InOrder(_root);}bool IsBalance(){return _IsBalance(_root);}int Hight(){return _Hight(_root);}int Size(){return _Size(_root);}private:void _InOrder(const Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}void RotateR(Node* parent){Node* subL = parent->_left;//parent的左子树parent->_left = subL->_right;//将subL的又给parent的左if (subL->_right)//如果subL的右不为空subL->_right->_parent = parent;//此时subL右的父节点就是parentNode* ppNode = parent->_parent;//记录parent的父节点方便后面subL不是root时候的链接subL->_right = parent;//将parent连接到subL的右边parent->_parent = subL;//将parent的父节点设置为subLif (parent == _root)//当前的parent是根节点{_root = subL;//新的根节点就是subL_root->_parent = nullptr;//根节点的父亲为空}else//当前的parent不是根节点{if (ppNode->_left == parent)//如果parent的是ppNode的左{ppNode->_left = subL;//将subL连接到ppNode的左边}else//parent的是ppNode的右{ppNode->_right = subL;//将subL连接到ppNode的右边}subL->_parent = ppNode;//subL的父节点指向ppNode}subL->_bf = parent->_bf = 0;//右单旋后subL和parent的bf都是0}void RotateL(Node* parent){Node* subR = parent->_right;//parent的右子树parent->_right = subR->_left;//将subR的左子树给parent的右if (subR->_left)//如果subR的左不为空subR->_left->_parent = parent;//subR的左的父亲就是parentNode* ppNode = parent->_parent;//记录parent的父节点方便后面subL不是root时候的链接subR->_left = parent;//将parent连接到subR的左parent->_parent = subR;//parent的父节点就是subRif (parent == _root)//parent是根节点{_root = subR;//此时subR就是新的根_root->_parent = nullptr;}else//parent不是根节点{if (ppNode->_left == parent)//parent是ppNode的左{ppNode->_left = subR;//将subR连接到ppNode的左}else//parent是ppNode的右{ppNode->_right = subR;//将subR连接到ppNode的右}subR->_parent = ppNode;//subR的父节点指向ppNode}subR->_bf = parent->_bf = 0;//左单旋后subR和parent的bf都是0}void RotateLR(Node* parent){Node* subL = parent->_left;//左子树Node* subLR = subL->_right;//左子树的右子树int bf = subLR->_bf;RotateL(parent->_left);//先对左子树左旋RotateR(parent);//在对整个树进行右旋//重新更新平衡因子if (bf == 0){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 0;}else if (bf == 1){subL->_bf = -1;subLR->_bf = 0;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 1;}else{assert(false);//正常不可能到这,这里是防止一开始就不是AVL}}void RotateRL(Node* parent){Node* subR = parent->_right;//右子树Node* subRL = subR->_left;//右子树的左子树int bf = subRL->_bf;RotateR(parent->_right);//先对右子树右旋RotateL(parent);//在对整个树进行左旋//重新更新平衡因子if (bf == 0){subR->_bf = 0;subRL->_bf = 0;parent->_bf = 0;}else if (bf == 1){subR->_bf = 0;subRL->_bf = 0;parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;subRL->_bf = 0;parent->_bf = 0;}else{assert(false);//正常不可能到这,这里是防止一开始就不是AVL}}bool _IsBalance(const Node* root){if (root == nullptr)//空树也平衡return true;int left = _Hight(root->_left);//求左子树的高度int right = _Hight(root->_right);//求右子树的高度if (abs(left - right) >= 2)//如果左右子树的高度差的绝对值差超过1则就是不平衡return false;if (right - left != root->_bf)//不平衡,打印出他的节点的key值{cout << root->_kv.first << endl;return false;}return _IsBalance(root->_left) && _IsBalance(root->_right);//左右子树都得平衡}int _Hight(Node* root){if (root == nullptr)//空树的个数是0return 0;return max(_Hight(root->_left), _Hight(root->_right)) + 1;//不是空返回左右子树的较大值 + 本身}int _Size(const Node* root){if (root == nullptr)//空树return 0;return _Size(root->_left) + _Size(root->_right) + 1;//左子树+右子树+本身}private:Node* _root = nullptr;//这里只有一个成员可以给一个缺省值就不用写构造函数了
};

ok,本期分享就到这里,好兄弟。我们下期再见!

结束语:不要因为被人的三言两语就打破你原本的深思熟虑!

这篇关于AVL树的介绍与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031424

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too