跟着AI学AI_05音频处理库 librosa 简介

2024-06-04 17:28

本文主要是介绍跟着AI学AI_05音频处理库 librosa 简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
librosa 是一个用于音频和音乐分析的 Python 库,特别适合处理音乐信息检索(MIR)任务。它提供了丰富的工具和函数来处理音频信号,从基础的音频加载和播放,到高级的特征提取和可视化。以下是 librosa 的一些主要功能和使用示例。

主要功能

  1. 音频加载和保存

    • 加载音频文件:librosa.load
    • 保存音频文件:librosa.output.write_wav
  2. 时间和频率操作

    • 计算时域和频域特征(如MFCC、色度、谱图等)
    • 音调和速度调整
    • 时间对齐和音频分割
  3. 特征提取

    • 梅尔频率倒谱系数(MFCC):librosa.feature.mfcc
    • 色度特征:librosa.feature.chroma_stft
    • 谱图:librosa.feature.melspectrogram
    • 零交叉率、短时能量等
  4. 音频效果

    • 滤波器应用
    • 时域和频域变换
    • 音频增益调整
  5. 可视化

    • 波形图:librosa.display.waveplot
    • 频谱图:librosa.display.specshow
    • 色度图等

安装

你可以使用 pip 安装 librosa

pip install librosa

示例

下面是一些常见的 librosa 用法示例:

1. 加载音频文件
import librosa# 加载音频文件
y, sr = librosa.load('path/to/audio/file.wav', sr=None)  # y 是音频时间序列,sr 是采样率
2. 绘制音频波形
import matplotlib.pyplot as plt
import librosa.display# 绘制波形
plt.figure(figsize=(12, 4))
librosa.display.waveplot(y, sr=sr)
plt.title('Waveform')
plt.show()
3. 计算并绘制梅尔频谱图
# 计算梅尔频谱图
S = librosa.feature.melspectrogram(y, sr=sr, n_mels=128)# 转换为分贝(dB)
S_db = librosa.power_to_db(S, ref=np.max)# 绘制梅尔频谱图
plt.figure(figsize=(12, 4))
librosa.display.specshow(S_db, sr=sr, x_axis='time', y_axis='mel', cmap='coolwarm')
plt.colorbar(format='%+2.0f dB')
plt.title('Mel Spectrogram')
plt.show()
4. 提取MFCC特征
# 提取MFCC特征
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)# 绘制MFCC特征
plt.figure(figsize=(12, 4))
librosa.display.specshow(mfccs, sr=sr, x_axis='time')
plt.colorbar()
plt.title('MFCC')
plt.show()
5. 时间拉伸和音调移位
# 时间拉伸
y_stretched = librosa.effects.time_stretch(y, rate=1.5)# 音调移位
y_shifted = librosa.effects.pitch_shift(y, sr, n_steps=4)
6. 短时傅里叶变换 (STFT)
# 计算STFT
D = librosa.stft(y)
D_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)# 绘制STFT
plt.figure(figsize=(12, 4))
librosa.display.specshow(D_db, sr=sr, x_axis='time', y_axis='log')
plt.colorbar(format='%+2.0f dB')
plt.title('STFT')
plt.show()

总结

librosa 是一个功能强大且灵活的音频处理库,特别适合音乐和音频信号分析。它提供了从基础的音频加载和处理,到高级的特征提取和可视化的全套工具,使得音频信号处理变得更加简单和高效。通过结合librosa 提供的各种功能,你可以轻松地进行音频数据的处理和分析。

在这里插入图片描述
librosa 是由 Brian McFee 开发并由开源社区进行维护和扩展的音频处理库。Brian McFee 是一位在音乐信息检索(Music Information Retrieval, MIR)领域颇有声望的研究人员,他目前在纽约大学(New York University, NYU)工作,担任数据科学与音乐技术领域的助理教授。

librosa 的开发起始于学术界,旨在为研究人员和工程师提供一个强大的音频处理工具包。由于其易用性和丰富的功能,librosa 在学术界和工业界得到了广泛应用,特别是在音乐信息检索、音频分析和机器学习等领域。

相关资源

  • GitHub 仓库librosa 的源代码和文档托管在 GitHub 上,地址是 https://github.com/librosa/librosa。在这个仓库中,你可以找到最新的代码、问题追踪、功能请求以及开发者贡献指南。

  • 文档:详细的使用文档和教程可以在 librosa 文档网站 上找到。文档涵盖了从基础使用到高级功能的各个方面,并提供了丰富的示例代码和解释。

主要贡献者

虽然 librosa 是由 Brian McFee 发起的,但该项目得到了许多其他开发者和研究人员的贡献。以下是一些主要的贡献者:

  • Brian McFee:项目的主要开发者和维护者。
  • Dan Ellis:对信号处理和音乐信息检索领域有重要贡献。
  • Colin Raffel:对库的开发和功能扩展有显著贡献。

开发背景

librosa 的开发背景主要来自音乐信息检索(MIR)和信号处理的需求。其设计目标是提供一个易于使用、功能强大且灵活的工具包,能够满足音频信号处理和分析的各种需求。librosa 的设计思想包括:

  1. 易用性:通过简单的API和丰富的文档,使用户能够快速上手进行音频处理。
  2. 功能性:提供广泛的音频处理功能,从基础的加载和播放,到高级的特征提取和分析。
  3. 扩展性:允许用户轻松扩展库的功能,以适应特定的应用需求。

总结

librosa 是一个由 Brian McFee 发起并由开源社区维护的音频处理库。其在音乐信息检索和音频分析领域具有重要地位,广泛应用于学术研究和工业实践。通过提供全面的功能和易用的接口,librosa 为音频信号处理和分析提供了强大的支持。

maraSun BJFWDQ

这篇关于跟着AI学AI_05音频处理库 librosa 简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030643

相关文章

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口