C++20 闩与屏障

2024-06-04 15:44
文章标签 c++ 20 屏障

本文主要是介绍C++20 闩与屏障,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C++20 闩与屏障

闩 (latch) 与屏障 (barrier) 是线程协调机制,允许任何数量的线程阻塞直至期待数量的线程到达。闩不能重复使用,而屏障则可以。

  • std::latch:单次使用的线程屏障
  • std::barrier:可复用的线程屏障

它们定义在标头 <latch><barrier>

与信号量类似,屏障也是一种古老而广泛应用的同步机制。许多系统 API 提供了对屏障机制的支持,例如 POSIX 和 Win32。此外,OpenMP 也提供了屏障机制来支持多线程编程。

std::latch

“闩”,这个字其实个人觉得是不常见,“门闩” 是指门背后用来关门的棍子。好了好了,不用在意,在 C++ 中就是先前说的:单次使用的线程屏障

latch 类维护着一个 std::ptrdiff_t 类型的计数1,且只能减少计数,无法增加计数。在创建对象的时候初始化计数器的值。线程可以阻塞,直到 latch 对象的计数减少到零。由于无法增加计数,这使得 latch 成为一种单次使用的屏障

std::latch work_start{ 3 };void work(){std::cout << "等待其它线程执行\n";work_start.wait(); // 等待计数为 0std::cout << "任务开始执行\n";
}int main(){std::jthread thread{ work };std::this_thread::sleep_for(3s);std::cout << "休眠结束\n";work_start.count_down();  // 默认值是 1 减少计数 1work_start.count_down(2); // 传递参数 2 减少计数 2
}

运行结果

等待其它线程执行
休眠结束
任务开始执行

在这个例子中,通过调用 wait 函数阻塞子线程,直到主线程调用 count_down 函数原子地将计数减至 0,从而解除阻塞。这个例子清楚地展示了 latch 的使用,其逻辑比信号量更简单。


由于 latch 的计数不可增加,它的使用通常非常简单,可以用来划分任务执行的工作区间。例如:

std::latch latch{ 10 };void f(int id) {//todo.. 脑补任务std::this_thread::sleep_for(1s);std::cout << std::format("线程 {} 执行完任务,开始等待其它线程执行到此处\n", id);latch.arrive_and_wait();std::cout << std::format("线程 {} 彻底退出函数\n", id);
}int main() {std::vector<std::jthread> threads;for (int i = 0; i < 10; ++i) {threads.emplace_back(f,i);}
}

运行测试。

arrive_and_wait 函数等价于:count_down(n); wait();。也就是减少计数 + 等待。这意味着

必须等待所有线程执行到 latch.arrive_and_wait(); 将 latch 的计数减少至 0 才能继续往下执行。这个示例非常直观地展示了如何使用 latch 来划分任务执行的工作区间。

由于 latch 的功能受限,通常用于简单直接的需求,不少情况很多同步设施都能完成你的需求,在这个时候请考虑使用尽可能功能最少的那一个

  • 使用功能尽可能少的设施有助于开发者阅读代码理解含义。如果使用的是一个功能丰富的设施,可能就无法直接猜测其意图。

std::barrier

上节我们学习了 std::latch ,本节内容也不会对你构成难度。

std::barrierstd::latch 最大的不同是,前者可以在阶段完成之后将计数重置为构造时传递的值,而后者只能减少计数。我们用一个非常简单直观的示例为你展示:

std::barrier barrier{ 10,[n = 1]()mutable noexcept {std::cout << "\t第" << n++ << "轮结束\n"; }
};void f(int start, int end){for (int i = start; i <= end; ++i) {std::osyncstream{ std::cout } << i << ' '; barrier.arrive_and_wait(); // 减少计数并等待 解除阻塞时就重置计数并调用函数对象std::this_thread::sleep_for(300ms);}
}int main(){std::vector<std::jthread> threads;for (int i = 0; i < 10; ++i) {threads.emplace_back(f, i * 10 + 1, (i + 1) * 10);}
}

可能的运行结果

1 21 11 31 41 51 61 71 81 91    第1轮结束
12 2 22 32 42 52 62 72 92 82    第2轮结束
13 63 73 33 23 53 83 93 43 3    第3轮结束
14 44 24 34 94 74 64 4 84 54    第4轮结束
5 95 15 45 75 25 55 65 35 85    第5轮结束
6 46 16 26 56 96 86 66 76 36    第6轮结束
47 17 57 97 87 67 77 7 27 37    第7轮结束
38 8 28 78 68 88 98 58 18 48    第8轮结束
9 39 29 69 89 99 59 19 79 49    第9轮结束
30 40 70 10 90 50 60 20 80 100  第10轮结束

注意输出的规律,第一轮每个数字最后一位都是 1,第二轮每个数字最后一位都是 2……以此类推,因为我们分配给每个线程的输出任务就是如此,然后利用了屏障一轮一轮地打印。

arrive_and_wait 等价于 wait(arrive());。原子地将期待计数减少 1,然后在当前阶段的同步点阻塞直至运行当前阶段的阶段完成步骤。

arrive_and_wait() 会在期待计数减少至 0 时调用我们构造 barrier 对象时传入的 lambda 表达式,并解除所有在阶段同步点上阻塞的线程。之后重置期待计数为构造中指定的值。屏障的一个阶段就完成了。

  • 并发调用barrier 除了析构函数外的成员函数不会引起数据竞争。

另外你可能注意到我们使用了 std::osyncstream ,它是 C++20 引入的,此处是确保输出流在多线程环境中同步,免除数据竞争,而且将不以任何方式穿插或截断

虽然 std::coutoperator<< 调用是线程安全的,不会被打断,但多个 operator<< 的调用在多线程环境中可能会交错,导致输出结果混乱,使用 std::osyncstream 就可以解决这个问题。开发者可以尝试去除 std::osyncstream 直接使用 std::cout,效果会非常明显。


使用 arrivearrive_and_wait 减少的都是当前屏障计数,我们称作“期待计数”。不管如何减少计数,当完成一个阶段,就重置期待计数为构造中指定的值了。

标准库还提供一个函数 arrive_and_drop 可以改变重置的计数值:它将所有后继阶段的初始期待计数减少一,当前阶段的期待计数也减少一

不用感到难以理解,我们来解释一下这个概念:

std::barrier barrier{ 4 }; // 初始化计数为 4 完成阶段重置计数也是 4
barrier.arrive_and_wait(); // 当前计数减 1,不影响之后重置计数 4
barrier.arrive_and_drop(); // 当前计数与重置之后的计数均减 1 完成阶段会重置计数为 3

arrive_and_drop 可以用来控制在需要的时候,让一些线程退出同步,如:

std::atomic_int active_threads{ 4 };
std::barrier barrier{ 4,[n = 1]() mutable noexcept {std::cout << "\t第" << n++ << "轮结束,活跃线程数: " << active_threads << '\n';}
};void f(int thread_id){for (int i = 0; i < 5; ++i) {std::osyncstream{ std::cout } << "线程 " << thread_id << " 输出: " << i << '\n';if (i == 2 && thread_id == 2) {  // 假设线程ID为2的线程在输出完2后退出std::osyncstream{ std::cout } << "线程 " << thread_id << " 完成并退出\n";--active_threads; // 减少活跃线程数barrier.arrive_and_drop(); // 减少当前计数 1,并减少重置计数 1return;}barrier.arrive_and_wait(); // 减少计数并等待,解除阻塞时重置计数并调用函数对象}
}int main(){std::vector<std::jthread> threads;for (int i = 1; i <= 4; ++i) {threads.emplace_back(f, i);}
}

运行测试。

初始线程有 4 个,线程 2 在执行了两轮同步之后便直接退出了,调用 arrive_and_drop 函数,下一个阶段的计数会重置为 3,也就是只有三个活跃线程继续执行。查看输出结果,非常的直观。

这样,arrive_and_drop 的作用就非常明显了,使用也十分的简单。


  1. 注:通常的实现是直接保有一个 std::atomic<std::ptrdiff_t> 私有数据成员,以保证计数修改的原子性。原子类型在我们第五章的内容会详细展开。 ↩︎

这篇关于C++20 闩与屏障的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030463

相关文章

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的