C++20 闩与屏障

2024-06-04 15:44
文章标签 c++ 20 屏障

本文主要是介绍C++20 闩与屏障,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C++20 闩与屏障

闩 (latch) 与屏障 (barrier) 是线程协调机制,允许任何数量的线程阻塞直至期待数量的线程到达。闩不能重复使用,而屏障则可以。

  • std::latch:单次使用的线程屏障
  • std::barrier:可复用的线程屏障

它们定义在标头 <latch><barrier>

与信号量类似,屏障也是一种古老而广泛应用的同步机制。许多系统 API 提供了对屏障机制的支持,例如 POSIX 和 Win32。此外,OpenMP 也提供了屏障机制来支持多线程编程。

std::latch

“闩”,这个字其实个人觉得是不常见,“门闩” 是指门背后用来关门的棍子。好了好了,不用在意,在 C++ 中就是先前说的:单次使用的线程屏障

latch 类维护着一个 std::ptrdiff_t 类型的计数1,且只能减少计数,无法增加计数。在创建对象的时候初始化计数器的值。线程可以阻塞,直到 latch 对象的计数减少到零。由于无法增加计数,这使得 latch 成为一种单次使用的屏障

std::latch work_start{ 3 };void work(){std::cout << "等待其它线程执行\n";work_start.wait(); // 等待计数为 0std::cout << "任务开始执行\n";
}int main(){std::jthread thread{ work };std::this_thread::sleep_for(3s);std::cout << "休眠结束\n";work_start.count_down();  // 默认值是 1 减少计数 1work_start.count_down(2); // 传递参数 2 减少计数 2
}

运行结果

等待其它线程执行
休眠结束
任务开始执行

在这个例子中,通过调用 wait 函数阻塞子线程,直到主线程调用 count_down 函数原子地将计数减至 0,从而解除阻塞。这个例子清楚地展示了 latch 的使用,其逻辑比信号量更简单。


由于 latch 的计数不可增加,它的使用通常非常简单,可以用来划分任务执行的工作区间。例如:

std::latch latch{ 10 };void f(int id) {//todo.. 脑补任务std::this_thread::sleep_for(1s);std::cout << std::format("线程 {} 执行完任务,开始等待其它线程执行到此处\n", id);latch.arrive_and_wait();std::cout << std::format("线程 {} 彻底退出函数\n", id);
}int main() {std::vector<std::jthread> threads;for (int i = 0; i < 10; ++i) {threads.emplace_back(f,i);}
}

运行测试。

arrive_and_wait 函数等价于:count_down(n); wait();。也就是减少计数 + 等待。这意味着

必须等待所有线程执行到 latch.arrive_and_wait(); 将 latch 的计数减少至 0 才能继续往下执行。这个示例非常直观地展示了如何使用 latch 来划分任务执行的工作区间。

由于 latch 的功能受限,通常用于简单直接的需求,不少情况很多同步设施都能完成你的需求,在这个时候请考虑使用尽可能功能最少的那一个

  • 使用功能尽可能少的设施有助于开发者阅读代码理解含义。如果使用的是一个功能丰富的设施,可能就无法直接猜测其意图。

std::barrier

上节我们学习了 std::latch ,本节内容也不会对你构成难度。

std::barrierstd::latch 最大的不同是,前者可以在阶段完成之后将计数重置为构造时传递的值,而后者只能减少计数。我们用一个非常简单直观的示例为你展示:

std::barrier barrier{ 10,[n = 1]()mutable noexcept {std::cout << "\t第" << n++ << "轮结束\n"; }
};void f(int start, int end){for (int i = start; i <= end; ++i) {std::osyncstream{ std::cout } << i << ' '; barrier.arrive_and_wait(); // 减少计数并等待 解除阻塞时就重置计数并调用函数对象std::this_thread::sleep_for(300ms);}
}int main(){std::vector<std::jthread> threads;for (int i = 0; i < 10; ++i) {threads.emplace_back(f, i * 10 + 1, (i + 1) * 10);}
}

可能的运行结果

1 21 11 31 41 51 61 71 81 91    第1轮结束
12 2 22 32 42 52 62 72 92 82    第2轮结束
13 63 73 33 23 53 83 93 43 3    第3轮结束
14 44 24 34 94 74 64 4 84 54    第4轮结束
5 95 15 45 75 25 55 65 35 85    第5轮结束
6 46 16 26 56 96 86 66 76 36    第6轮结束
47 17 57 97 87 67 77 7 27 37    第7轮结束
38 8 28 78 68 88 98 58 18 48    第8轮结束
9 39 29 69 89 99 59 19 79 49    第9轮结束
30 40 70 10 90 50 60 20 80 100  第10轮结束

注意输出的规律,第一轮每个数字最后一位都是 1,第二轮每个数字最后一位都是 2……以此类推,因为我们分配给每个线程的输出任务就是如此,然后利用了屏障一轮一轮地打印。

arrive_and_wait 等价于 wait(arrive());。原子地将期待计数减少 1,然后在当前阶段的同步点阻塞直至运行当前阶段的阶段完成步骤。

arrive_and_wait() 会在期待计数减少至 0 时调用我们构造 barrier 对象时传入的 lambda 表达式,并解除所有在阶段同步点上阻塞的线程。之后重置期待计数为构造中指定的值。屏障的一个阶段就完成了。

  • 并发调用barrier 除了析构函数外的成员函数不会引起数据竞争。

另外你可能注意到我们使用了 std::osyncstream ,它是 C++20 引入的,此处是确保输出流在多线程环境中同步,免除数据竞争,而且将不以任何方式穿插或截断

虽然 std::coutoperator<< 调用是线程安全的,不会被打断,但多个 operator<< 的调用在多线程环境中可能会交错,导致输出结果混乱,使用 std::osyncstream 就可以解决这个问题。开发者可以尝试去除 std::osyncstream 直接使用 std::cout,效果会非常明显。


使用 arrivearrive_and_wait 减少的都是当前屏障计数,我们称作“期待计数”。不管如何减少计数,当完成一个阶段,就重置期待计数为构造中指定的值了。

标准库还提供一个函数 arrive_and_drop 可以改变重置的计数值:它将所有后继阶段的初始期待计数减少一,当前阶段的期待计数也减少一

不用感到难以理解,我们来解释一下这个概念:

std::barrier barrier{ 4 }; // 初始化计数为 4 完成阶段重置计数也是 4
barrier.arrive_and_wait(); // 当前计数减 1,不影响之后重置计数 4
barrier.arrive_and_drop(); // 当前计数与重置之后的计数均减 1 完成阶段会重置计数为 3

arrive_and_drop 可以用来控制在需要的时候,让一些线程退出同步,如:

std::atomic_int active_threads{ 4 };
std::barrier barrier{ 4,[n = 1]() mutable noexcept {std::cout << "\t第" << n++ << "轮结束,活跃线程数: " << active_threads << '\n';}
};void f(int thread_id){for (int i = 0; i < 5; ++i) {std::osyncstream{ std::cout } << "线程 " << thread_id << " 输出: " << i << '\n';if (i == 2 && thread_id == 2) {  // 假设线程ID为2的线程在输出完2后退出std::osyncstream{ std::cout } << "线程 " << thread_id << " 完成并退出\n";--active_threads; // 减少活跃线程数barrier.arrive_and_drop(); // 减少当前计数 1,并减少重置计数 1return;}barrier.arrive_and_wait(); // 减少计数并等待,解除阻塞时重置计数并调用函数对象}
}int main(){std::vector<std::jthread> threads;for (int i = 1; i <= 4; ++i) {threads.emplace_back(f, i);}
}

运行测试。

初始线程有 4 个,线程 2 在执行了两轮同步之后便直接退出了,调用 arrive_and_drop 函数,下一个阶段的计数会重置为 3,也就是只有三个活跃线程继续执行。查看输出结果,非常的直观。

这样,arrive_and_drop 的作用就非常明显了,使用也十分的简单。


  1. 注:通常的实现是直接保有一个 std::atomic<std::ptrdiff_t> 私有数据成员,以保证计数修改的原子性。原子类型在我们第五章的内容会详细展开。 ↩︎

这篇关于C++20 闩与屏障的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030463

相关文章

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y