【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量)

本文主要是介绍【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 前言
  • 2. 算法题
    • 2.1_【模板】01背包
    • 2.2_分割等和子集
    • 2.3_目标和
    • 2.4_最后一块石头的重量II

1. 前言

关于 动态规划的理解 与例题,点击👇

【动态规划】C++解决斐波那契模型题目(三步问题、爬楼梯、解码方法…)

有了上面的经验,我们来解下面 01 背包问题

2. 算法题

2.1_【模板】01背包

在这里插入图片描述

思路

  1. 设置状态表示

    • 对于此类背包问题,我们需要考虑的因素往往不止一个,状态表示会根据影响结果的因素而定
    • dp[i][j]:从前i个物品进行选择,所选体积不超过j的最大价值
  2. 写状态转移方程

    在这里插入图片描述

  3. 初始化

    • 虚拟空间一行一列,并初始化为0(因为会用max更新dp值)
  4. 填表的顺序

    • 从上向下 填表即可
  5. 返回值

    • dp[n][V]

代码

#include <iostream>
#include <string>using namespace std;// 定义全局变量 自动初始化为0
const int N = 1001;
int w[N], v[N], n , V; // n个物品 体积为V
int dp[N][N]; // dp数组: 自动初始化为0// 01背包
int main()
{// 读数据cin >> n >> V;for(int i = 1; i <= n; ++i)cin >> v[i] >> w[i];// 第一问// dp[i][j]:从前i个物品进行选择,所选体积不超过j的最大价值for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i-1][j]; // 不选i物品if(j >= v[i])dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);    }cout << dp[n][V] << endl;// 第二问// 初始化dpfor(int j = 1; j <= V; ++j) dp[0][j] = -1; // -1表示无效选法// 填表for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i-1][j]; // 不选i物品if(j >= v[i] && dp[i-1][j-v[i]] != -1)dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);    }cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}

2.2_分割等和子集

在这里插入图片描述

思路

  • 题意分析
    • 题目要求判断是否可以将数组分割成两个元素和相同的子集,即每个子集的元素和为sum(数组总和) / 2
    • 我们可以对题目进行转化,即只要能在数组中找到子集使其和为sum/2,那么就一定有另一个和自己元素和相同的子集
    • 即在数组中找到和为sum/2的元素选法个数,即01背包
  1. 设置状态表示

    • 根据题目,要求判断是否可以将数组分割,所以dp表类型设置为bool
    • dp[i][j]:以i为结尾的子数组中所有的选法中,是否有总和为j的
  2. 写状态转移方程
    在这里插入图片描述

  3. 初始化
    在这里插入图片描述

  4. 填表的顺序

    • 从上向下填写每行
  5. 返回值

    • dp[n][sum/2]

代码

class Solution {
public:bool canPartition(vector<int>& nums) {// 题目转化:找数,使和为sum/2int sum = 0, n = nums.size();for(auto num : nums)    sum += num; // 数组和if(sum % 2 == 1)    return false; // 奇数,不能分割int aim = sum / 2;// 创建dp数组:dp[i][j]: 以i为结尾的子数组中,总和是否为jvector<vector<bool>> dp(n+1, vector<bool>(aim+1));// 初始化 + 填表for(int i = 0; i <= n; ++i) dp[i][0] = true;for(int i = 1; i <= n; ++i)for(int j = 1; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i位置数if(j >= nums[i-1]) // 映射下标dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

2.3_目标和

在这里插入图片描述

思路

  • 题意分析
    • 根据题目,即由x个正数与y个负数可以组成目标值target
    • 那么有:x - y = target,x + y = sum(数组和)
    • 则 x = (target + sum) / 2
    • 此时题目可以理解成,从数组中选择数,数的总和为x,求总共的选法,即01背包:
  1. 设置状态表示
    • dp[i][j]:以i为结尾的子数组中和为j的选法的个数
  2. 写状态转移方程
    • 可以看出本题与上题的总体差别不大,根据状态表示的不同,状态转移方程和初始化进行简单改动:

在这里插入图片描述

  1. 初始化

    • 只需要初始化第一行,dp[0][0] = 0,dp[0][j] = 1(j >= 1)
  2. 填表的顺序

    • 从上向下
  3. 返回值

    • dp[n][aim]

代码

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {// 题目转化:从数组中选择一些数,使其和为目标值,求选法的个数int n = nums.size(), sum = 0; // 数组和for(auto x : nums) sum += x;// a: 正数和    b: 负数和(绝对值)// a + b = sum; a - b = targetint aim = (sum + target) / 2; if(aim < 0 || (sum + target) % 2 == 1) return 0; // 处理边界条件// 创建 + 初始化vector<vector<int>> dp(n+1, vector<int>(aim + 1));dp[0][0] = 1;for(int i = 1; i <= n; ++i)for(int j = 0; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i位置数if(j >= nums[i-1]) dp[i][j] += dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

2.4_最后一块石头的重量II

在这里插入图片描述

思路

  • 题意分析
    • 观察题目,石头碰撞的过程实际就是,两个数相减的过程;
    • 要想使最后的重量最小,只需要在数组中找到序列总和尽可能接近sum/2,此时与剩下的相减的值就是最小的
    • 即转化为了01背包问题;
  1. 设置状态表示

    • dp[i][j]:以i为结尾的子数组中,总和不大于j的最大和(<=j)
  2. 写状态转移方程

    在这里插入图片描述

  3. 初始化

    • 初始化第一行为0
  4. 填表的顺序

    • 从上往下
  5. 返回值

    • sum - (2*dp[n][sum / 2])

代码

int lastStoneWeightII(vector<int>& stones) {// 题目转化为: 在数组中选数,使其总和最接近sum/2int sum = 0, n = stones.size();for(auto x : stones) sum += x;int aim = sum / 2;// 创建dp数组: dp[i][j]:从前i个数中选数,使其和最接近j时的值vector<vector<int>> dp(n+1, vector<int>(aim+1));for(int i = 1; i <= n; ++i)for(int j = 0; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i数if(j >= stones[i-1]) dp[i][j] = max(dp[i-1][j], dp[i-1][j-stones[i-1]] + stones[i-1]);}return sum - 2*dp[n][aim];}

这篇关于【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030277

相关文章

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2