【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量)

本文主要是介绍【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 前言
  • 2. 算法题
    • 2.1_【模板】01背包
    • 2.2_分割等和子集
    • 2.3_目标和
    • 2.4_最后一块石头的重量II

1. 前言

关于 动态规划的理解 与例题,点击👇

【动态规划】C++解决斐波那契模型题目(三步问题、爬楼梯、解码方法…)

有了上面的经验,我们来解下面 01 背包问题

2. 算法题

2.1_【模板】01背包

在这里插入图片描述

思路

  1. 设置状态表示

    • 对于此类背包问题,我们需要考虑的因素往往不止一个,状态表示会根据影响结果的因素而定
    • dp[i][j]:从前i个物品进行选择,所选体积不超过j的最大价值
  2. 写状态转移方程

    在这里插入图片描述

  3. 初始化

    • 虚拟空间一行一列,并初始化为0(因为会用max更新dp值)
  4. 填表的顺序

    • 从上向下 填表即可
  5. 返回值

    • dp[n][V]

代码

#include <iostream>
#include <string>using namespace std;// 定义全局变量 自动初始化为0
const int N = 1001;
int w[N], v[N], n , V; // n个物品 体积为V
int dp[N][N]; // dp数组: 自动初始化为0// 01背包
int main()
{// 读数据cin >> n >> V;for(int i = 1; i <= n; ++i)cin >> v[i] >> w[i];// 第一问// dp[i][j]:从前i个物品进行选择,所选体积不超过j的最大价值for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i-1][j]; // 不选i物品if(j >= v[i])dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);    }cout << dp[n][V] << endl;// 第二问// 初始化dpfor(int j = 1; j <= V; ++j) dp[0][j] = -1; // -1表示无效选法// 填表for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i-1][j]; // 不选i物品if(j >= v[i] && dp[i-1][j-v[i]] != -1)dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);    }cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}

2.2_分割等和子集

在这里插入图片描述

思路

  • 题意分析
    • 题目要求判断是否可以将数组分割成两个元素和相同的子集,即每个子集的元素和为sum(数组总和) / 2
    • 我们可以对题目进行转化,即只要能在数组中找到子集使其和为sum/2,那么就一定有另一个和自己元素和相同的子集
    • 即在数组中找到和为sum/2的元素选法个数,即01背包
  1. 设置状态表示

    • 根据题目,要求判断是否可以将数组分割,所以dp表类型设置为bool
    • dp[i][j]:以i为结尾的子数组中所有的选法中,是否有总和为j的
  2. 写状态转移方程
    在这里插入图片描述

  3. 初始化
    在这里插入图片描述

  4. 填表的顺序

    • 从上向下填写每行
  5. 返回值

    • dp[n][sum/2]

代码

class Solution {
public:bool canPartition(vector<int>& nums) {// 题目转化:找数,使和为sum/2int sum = 0, n = nums.size();for(auto num : nums)    sum += num; // 数组和if(sum % 2 == 1)    return false; // 奇数,不能分割int aim = sum / 2;// 创建dp数组:dp[i][j]: 以i为结尾的子数组中,总和是否为jvector<vector<bool>> dp(n+1, vector<bool>(aim+1));// 初始化 + 填表for(int i = 0; i <= n; ++i) dp[i][0] = true;for(int i = 1; i <= n; ++i)for(int j = 1; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i位置数if(j >= nums[i-1]) // 映射下标dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

2.3_目标和

在这里插入图片描述

思路

  • 题意分析
    • 根据题目,即由x个正数与y个负数可以组成目标值target
    • 那么有:x - y = target,x + y = sum(数组和)
    • 则 x = (target + sum) / 2
    • 此时题目可以理解成,从数组中选择数,数的总和为x,求总共的选法,即01背包:
  1. 设置状态表示
    • dp[i][j]:以i为结尾的子数组中和为j的选法的个数
  2. 写状态转移方程
    • 可以看出本题与上题的总体差别不大,根据状态表示的不同,状态转移方程和初始化进行简单改动:

在这里插入图片描述

  1. 初始化

    • 只需要初始化第一行,dp[0][0] = 0,dp[0][j] = 1(j >= 1)
  2. 填表的顺序

    • 从上向下
  3. 返回值

    • dp[n][aim]

代码

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {// 题目转化:从数组中选择一些数,使其和为目标值,求选法的个数int n = nums.size(), sum = 0; // 数组和for(auto x : nums) sum += x;// a: 正数和    b: 负数和(绝对值)// a + b = sum; a - b = targetint aim = (sum + target) / 2; if(aim < 0 || (sum + target) % 2 == 1) return 0; // 处理边界条件// 创建 + 初始化vector<vector<int>> dp(n+1, vector<int>(aim + 1));dp[0][0] = 1;for(int i = 1; i <= n; ++i)for(int j = 0; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i位置数if(j >= nums[i-1]) dp[i][j] += dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

2.4_最后一块石头的重量II

在这里插入图片描述

思路

  • 题意分析
    • 观察题目,石头碰撞的过程实际就是,两个数相减的过程;
    • 要想使最后的重量最小,只需要在数组中找到序列总和尽可能接近sum/2,此时与剩下的相减的值就是最小的
    • 即转化为了01背包问题;
  1. 设置状态表示

    • dp[i][j]:以i为结尾的子数组中,总和不大于j的最大和(<=j)
  2. 写状态转移方程

    在这里插入图片描述

  3. 初始化

    • 初始化第一行为0
  4. 填表的顺序

    • 从上往下
  5. 返回值

    • sum - (2*dp[n][sum / 2])

代码

int lastStoneWeightII(vector<int>& stones) {// 题目转化为: 在数组中选数,使其总和最接近sum/2int sum = 0, n = stones.size();for(auto x : stones) sum += x;int aim = sum / 2;// 创建dp数组: dp[i][j]:从前i个数中选数,使其和最接近j时的值vector<vector<int>> dp(n+1, vector<int>(aim+1));for(int i = 1; i <= n; ++i)for(int j = 0; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i数if(j >= stones[i-1]) dp[i][j] = max(dp[i-1][j], dp[i-1][j-stones[i-1]] + stones[i-1]);}return sum - 2*dp[n][aim];}

这篇关于【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030277

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩