使用sklearn CountVectorizer 实现n-gram

2024-06-04 12:48

本文主要是介绍使用sklearn CountVectorizer 实现n-gram,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#coding=utf-8
'''
Created on 2018-1-25'''from sklearn.feature_extraction.text import CountVectorizertext = ["A smile is the most charming part of a person forever.","A smile is"]# ngram_range=(2, 2)表明适应2-gram,decode_error="ignore"忽略异常字符,token_pattern按照单词切割
ngram_vectorizer = CountVectorizer(ngram_range=(2, 2), decode_error="ignore",token_pattern = r'\b\w+\b',min_df=1)x1 = ngram_vectorizer.fit_transform(text)
print x1
# (0, 7)    1
# (0, 0)    1
# (0, 5)    1
# (0, 6)    1
# (0, 2)    1
# (0, 4)    1
# (0, 9)    1
# (0, 3)    1
# (0, 8)    1
# (0, 1)    1
# (1, 8)    1
# (1, 1)    1
print x1.toarray()
# [[1 1 1 1 1 1 1 1 1 1]
#  [0 1 0 0 0 0 0 0 1 0]]
# 查看生成的词表
print ngram_vectorizer.vocabulary_
# {u'person forever': 7, u'part of': 6, u'smile is': 8, u'a smile': 1, u'of a': 5, u'the most': 9, u'is the': 3, u'charming part': 2, u'a person': 0, u'most charming': 4}# 如果ngram_range=(2, 4),则表示2,3,4个单词切割
ngram_vectorizer = CountVectorizer(ngram_range=(2, 4), decode_error="ignore",token_pattern = r'\b\w+\b',min_df=1)
x1 = ngram_vectorizer.fit_transform(text)
print x1
# (0, 16)    1
# (0, 19)    1
# (0, 7)    1
# (0, 13)    1
# (0, 26)    1
# (0, 10)    1
# (0, 23)    1
# (0, 4)    1
# (0, 1)    1
# (0, 15)    1
# (0, 18)    1
# (0, 6)    1
# (0, 12)    1
# (0, 25)    1
# (0, 9)    1
# (0, 22)    1
# (0, 3)    1
# (0, 20)    1
# (0, 0)    1
# (0, 14)    1
# (0, 17)    1
# (0, 5)    1
# (0, 11)    1
# (0, 24)    1
# (0, 8)    1
# (0, 21)    1
# (0, 2)    1
# (1, 3)    1
# (1, 21)    1
# (1, 2)    1
print ngram_vectorizer.vocabulary_
# {u'smile is': 21, u'charming part of a': 7, u'a smile': 2, u'part of': 17, u'is the most charming': 10, u'the most': 24, u'of a person forever': 16, u'the most charming': 25, u'most charming part': 12, u'is the': 8, u'charming part': 5, u'most charming': 11, u'part of a': 18, u'smile is the most': 23, u'person forever': 20, u'is the most': 9, u'most charming part of': 13, u'of a': 14, u'smile is the': 22, u'charming part of': 6, u'a person forever': 1, u'the most charming part': 26, u'a smile is the': 4, u'part of a person': 19, u'a smile is': 3, u'a person': 0, u'of a person': 15}

这篇关于使用sklearn CountVectorizer 实现n-gram的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030130

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置