stm32标准库usart1,usrat2,usart3三个串口的配置以及printf重定向(串口输出)

本文主要是介绍stm32标准库usart1,usrat2,usart3三个串口的配置以及printf重定向(串口输出),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        我刚开始学串口时,因为要用到多个串口,自己又懒得改,总是在网上要找半天。下面将stm32的三个串口配置罗列下来,方便大家直接copy。

1、串口1

引脚:TX:PA9;

           RX:PA10;

重定向函数:printf();

usart.c

#include "sys.h"
#include "usart.h"	  
// 	 
//如果使用ucos,则包括下面的头文件即可.
#if SYSTEM_SUPPORT_OS
#include "includes.h"					//ucos 使用	  
#endif//
//加入以下代码,支持printf函数,而不需要选择use MicroLIB	  
#if 1
#pragma import(__use_no_semihosting)             
//标准库需要的支持函数                 
struct __FILE 
{ int handle; }; FILE __stdout;       
//定义_sys_exit()以避免使用半主机模式    
void _sys_exit(int x) 
{ x = x; 
} 
//重定义fputc函数 
int fputc(int ch, FILE *f)
{      while((USART2->SR&0X40)==0);//循环发送,直到发送完毕   USART2->DR = (u8) ch;      return ch;
}
#endif #if EN_USART1_RX   //如果使能了接收
//串口1中断服务程序
//注意,读取USARTx->SR能避免莫名其妙的错误   	
u8 USART_RX_BUF[USART_REC_LEN];     //接收缓冲,最大USART_REC_LEN个字节.
//接收状态
//bit15,	接收完成标志
//bit14,	接收到0x0d
//bit13~0,	接收到的有效字节数目
u16 USART_RX_STA=0;       //接收状态标记	  void uart1_init(u32 bound){//GPIO端口设置GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE);	//使能USART1,GPIOA时钟//USART1_TX   GPIOA.9GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;	//复用推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.9//USART1_RX	  GPIOA.10初始化GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10  //Usart1 NVIC 配置NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;		//子优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器//USART 初始化设置USART_InitStructure.USART_BaudRate = bound;//串口波特率USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;	//收发模式USART_Init(USART1, &USART_InitStructure); //初始化串口1USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串口接受中断USART_Cmd(USART1, ENABLE);                    //使能串口1 }void USART1_IRQHandler(void)                	//串口1中断服务程序
{u8 Res;
#if SYSTEM_SUPPORT_OS 		//如果SYSTEM_SUPPORT_OS为真,则需要支持OS.OSIntEnter();    
#endifif(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)  //接收中断(接收到的数据必须是0x0d 0x0a结尾){Res =USART_ReceiveData(USART1);	//读取接收到的数据if((USART_RX_STA&0x8000)==0)//接收未完成{if(USART_RX_STA&0x4000)//接收到了0x0d{if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始else USART_RX_STA|=0x8000;	//接收完成了 }else //还没收到0X0D{	if(Res==0x0d)USART_RX_STA|=0x4000;else{USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;USART_RX_STA++;if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收	  }		 }}   		 } 
#if SYSTEM_SUPPORT_OS 	//如果SYSTEM_SUPPORT_OS为真,则需要支持OS.OSIntExit();  											 
#endif
} 
#endif	

usart.h

#ifndef __USART_H
#define __USART_H
#include "stdio.h"	
#include "sys.h" #define USART_REC_LEN  			200  	//定义最大接收字节数 200
#define EN_USART1_RX 			1		//使能(1)/禁止(0)串口1接收extern u8  USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 
extern u16 USART_RX_STA;         		//接收状态标记	
//如果想串口中断接收,请不要注释以下宏定义
void uart1_init(u32 bound);
#endif

2、串口2

引脚:TX:PA2;

           RX:PA3;

重定向函数:u2_printf();

usart2.c

#include "sys.h"
#include "usart2.h"	  
#include <stdarg.h>
#include <string.h>u8 USART_RX_BUF2[USART_REC_LEN];
//接收状态
//bit15,	接收完成标志
//bit14,	接收到0x0d
//bit13~0,	接收到的有效字节数目
u16 USART_RX_STA2=0;       //接收状态标记	  void uart2_init(u32 bound){//GPIO端口设置GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE);	//使能USART2时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);	//使能GPIOA时钟USART_DeInit(USART2);  //复位串口2//USART1_TX   GPIOA.2GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //PA.2GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;	//复用推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.2//USART1_RX	  GPIOA.3初始化GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;//PA3GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.3 //Usart2 NVIC 配置NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2;  //抢占优先级2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;		//子优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器//USART 初始化设置USART_InitStructure.USART_BaudRate = bound;//串口波特率USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;	//收发模式USART_Init(USART2, &USART_InitStructure); //初始化串口2USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);//开启串口接受中断USART_Cmd(USART2, ENABLE);                    //使能串口2 }void USART2_IRQHandler(void)                	//串口2中断服务程序
{u8 Res;if(USART_GetITStatus(USART2, USART_IT_RXNE) != RESET)  //接收中断(接收到的数据必须是0x0d 0x0a结尾){Res =USART_ReceiveData(USART2);	//读取接收到的数据if((USART_RX_STA2&0x8000)==0)//接收未完成{if(USART_RX_STA2&0x4000)//接收到了0x0d{if(Res!=0x0a)USART_RX_STA2=0;//接收错误,重新开始else USART_RX_STA2|=0x8000;	//接收完成了 }else //还没收到0X0D{	if(Res==0x0d)USART_RX_STA2|=0x4000;else{USART_RX_BUF2[USART_RX_STA2&0X3FFF]=Res ;USART_RX_STA2++;if(USART_RX_STA2>(USART_REC_LEN-1))USART_RX_STA2=0;//接收数据错误,重新开始接收	  }		 }}   		 } }char UART2_TX_BUF[200];
void u2_printf(char* fmt, ...)    //无法列出传递函数的所有实参的类型和数目时,可以用省略号指定参数表
{u16 i, j;va_list ap;          //va_list 是一个字符指针,可以理解为指向当前参数的一个指针,取参必须通过这个指针进行。va_start(ap, fmt);   //va_start函数来获取参数列表中的参数,使用完毕后调用va_end()结束vsprintf((char*)UART2_TX_BUF, fmt, ap);	// 把生成的格式化的字符串存放在这里va_end(ap);i = strlen((const char*)UART2_TX_BUF);              //此次发送数据的长度for(j = 0; j < i; j++)                                                    //循环发送数据{while((USART2->SR & 0X40) == 0);                    //循环发送,直到发送完毕USART2->DR = UART2_TX_BUF[j];}
}

usart2.h

#ifndef __USART2_H
#define __USART2_H
#include "stdio.h"	
#include "sys.h" #define USART_REC_LEN  			200  	//定义最大接收字节数 200
#define EN_USART2_RX 			1		//使能(1)/禁止(0)串口1接收extern u8  USART_RX_BUF2[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 
extern u16 USART_RX_STA2;         		//接收状态标记	void uart2_init(u32 bound);
void u2_printf(char* fmt, ...);
#endif

3、串口3

引脚:TX:PB10;

           RX:PB11;

重定向函数:u3_printf();

usart3.c

#include "sys.h"
#include "usart3.h"
#include "stdarg.h"	 	 
#include "stdio.h"	 	 
#include "string.h"	
// 	 
//如果使用ucos,则包括下面的头文件即可.
#if SYSTEM_SUPPORT_OS
#include "includes.h"					//ucos 使用	  
#endif#if EN_USART3_RX
u8  USART3_RX_BUF[USART3_REC_LEN]; 	//接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 
u8  USART3_TX_BUF[USART3_SED_LEN]; 	//发送缓冲,最大USART3_SED_LEN个字节.末字节为换行符
u16 USART3_RX_STA = 0;         			//接收状态标记	void u3_printf(char* fmt,...)  
{  u16 i,j; va_list ap; va_start(ap,fmt);vsprintf((char*)USART3_TX_BUF,fmt,ap);va_end(ap);i=strlen((const char*)USART3_TX_BUF);		//此次发送数据的长度for(j=0;j<i;j++)							//循环发送数据{while(USART_GetFlagStatus(USART3,USART_FLAG_TC)==RESET); //循环发送,直到发送完毕   USART_SendData(USART3,USART3_TX_BUF[j]); } 
}void uart3_init(u32 bound)
{NVIC_InitTypeDef NVIC_InitStructure;GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);	// GPIOB时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE); //串口3时钟使能USART_DeInit(USART3);  //复位串口3//USART3_TX   PB10GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //PB10GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;	//复用推挽输出GPIO_Init(GPIOB, &GPIO_InitStructure); //初始化PB10//USART3_RX	  PB11GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入GPIO_Init(GPIOB, &GPIO_InitStructure);  //初始化PB11USART_InitStructure.USART_BaudRate = bound;//波特率一般设置为9600;USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;	//收发模式USART_Init(USART3, &USART_InitStructure); //初始化串口	3USART_Cmd(USART3, ENABLE);                    //使能串口 //使能接收中断USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);//开启中断   //设置中断优先级NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0 ;//抢占优先级3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;		//子优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器USART3_RX_STA=0;		//清零
}void USART3_IRQHandler(void) // 串口3中断服务函数
{u8 res;if(USART_GetITStatus(USART3,USART_IT_RXNE)) // 中断标志{res= USART_ReceiveData(USART3);  // 串口3 接收if((USART3_RX_STA&0x8000)==0)//接收未完成{if(USART3_RX_STA&0x4000)//接收到了0x0d{if(res!=0x0a)USART3_RX_STA=0;//接收错误,重新开始else USART3_RX_STA|=0x8000;	//接收完成了 }else{ 							//还没收到0X0Dif(res==0x0d)USART3_RX_STA|=0x4000;else{USART3_RX_BUF[USART3_RX_STA&0X3FFF]=res ;USART3_RX_STA++;if(USART3_RX_STA>(USART3_REC_LEN-1))USART3_RX_STA=0;//接收数据错误,重新开始接收	  }		 }} }
}#endif

usart3.h

#ifndef __USART3_H
#define __USART3_H
#include "stdio.h"	
#include "sys.h" #define USART3_REC_LEN  			200  	//定义最大接收字节数 200
#define USART3_SED_LEN  			200  	//定义最大发送字节数 200
#define EN_USART3_RX 			1			//使能(1)/禁止(0)串口3接收
extern u8  USART3_RX_BUF[USART3_REC_LEN]; 	//接收缓冲,最大USART3_REC_LEN个字节.末字节为换行符 
extern u8  USART3_TX_BUF[USART3_SED_LEN]; 	//发送缓冲,最大USART3_SED_LEN个字节.末字节为换行符
extern u16 USART3_RX_STA;         			//接收状态标记	
void uart3_init(u32 bound);
void u3_printf(char* fmt,...);
#endif

这篇关于stm32标准库usart1,usrat2,usart3三个串口的配置以及printf重定向(串口输出)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029205

相关文章

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

Nginx 重写与重定向配置方法

《Nginx重写与重定向配置方法》Nginx重写与重定向区别:重写修改路径(客户端无感知),重定向跳转新URL(客户端感知),try_files检查文件/目录存在性,return301直接返回永久重... 目录一.try_files指令二.return指令三.rewrite指令区分重写与重定向重写: 请求

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示