Datacamp 笔记代码 Supervised Learning with scikit-learn 第四章 Preprocessing and pipelines

本文主要是介绍Datacamp 笔记代码 Supervised Learning with scikit-learn 第四章 Preprocessing and pipelines,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多原始数据文档和JupyterNotebook
Github: https://github.com/JinnyR/Datacamp_DataScienceTrack_Python

Datacamp track: Data Scientist with Python - Course 21 (4)

Exercise

Exploring categorical features

The Gapminder dataset that you worked with in previous chapters also contained a categorical 'Region' feature, which we dropped in previous exercises since you did not have the tools to deal with it. Now however, you do, so we have added it back in!

Your job in this exercise is to explore this feature. Boxplots are particularly useful for visualizing categorical features such as this.

Instruction

  • Import pandas as pd.
  • Read the CSV file 'gapminder.csv' into a DataFrame called df.
  • Use pandas to create a boxplot showing the variation of life expectancy ('life') by region ('Region'). To do so, pass the column names in to df.boxplot() (in that order).
import matplotlib.pyplot as plt
plt.style.use('ggplot')
from urllib.request import urlretrieve
fn = 'https://s3.amazonaws.com/assets.datacamp.com/production/course_1939/datasets/gm_2008_region.csv'
urlretrieve(fn, 'gapminder.csv')
('gapminder.csv', <http.client.HTTPMessage at 0x11515f0b8>)
# Import pandas
import pandas as pd# Read 'gapminder.csv' into a DataFrame: df
df = pd.read_csv('gapminder.csv')# Create a boxplot of life expectancy per region
df.boxplot('life', 'Region', rot=60)# Show the plot
plt.show()

[外链图片转存失败(img-TzFIQdvn-1564048295763)(output_2_0.png)]

Exercise

Creating dummy variables

As Andy discussed in the video, scikit-learn does not accept non-numerical features. You saw in the previous exercise that the 'Region' feature contains very useful information that can predict life expectancy. For example, Sub-Saharan Africa has a lower life expectancy compared to Europe and Central Asia. Therefore, if you are trying to predict life expectancy, it would be preferable to retain the 'Region' feature. To do this, you need to binarize it by creating dummy variables, which is what you will do in this exercise.

Instruction

  • Use the pandas get_dummies() function to create dummy variables from the df DataFrame. Store the result as df_region.
  • Print the columns of df_region. This has been done for you.
  • Use the get_dummies() function again, this time specifying drop_first=True to drop the unneeded dummy variable (in this case, 'Region_America').
  • Hit 'Submit Answer to print the new columns of df_region and take note of how one column was dropped!
# Create dummy variables: df_region
df_region = pd.get_dummies(df)# Print the columns of df_region
print(df_region.columns)# Create dummy variables with drop_first=True: df_region
df_region = pd.get_dummies(df, drop_first=True)# Print the new columns of df_region
print(df_region.columns)
Index(['population', 'fertility', 'HIV', 'CO2', 'BMI_male', 'GDP','BMI_female', 'life', 'child_mortality', 'Region_America','Region_East Asia & Pacific', 'Region_Europe & Central Asia','Region_Middle East & North Africa', 'Region_South Asia','Region_Sub-Saharan Africa'],dtype='object')
Index(['population', 'fertility', 'HIV', 'CO2', 'BMI_male', 'GDP','BMI_female', 'life', 'child_mortality', 'Region_East Asia & Pacific','Region_Europe & Central Asia', 'Region_Middle East & North Africa','Region_South Asia', 'Region_Sub-Saharan Africa'],dtype='object')

Exercise

Regression with categorical features

Having created the dummy variables from the 'Region'feature, you can build regression models as you did before. Here, you’ll use ridge regression to perform 5-fold cross-validation.

The feature array X and target variable array y have been pre-loaded.

Instruction

  • Import Ridge from sklearn.linear_model and cross_val_score from sklearn.model_selection.
  • Instantiate a ridge regressor called ridge with alpha=0.5 and normalize=True.
  • Perform 5-fold cross-validation on X and y using the cross_val_score() function.
  • Print the cross-validated scores.
# modified/added by Jinny
import pandas as pd
import numpy as npfrom urllib.request import urlretrievefn = 'https://s3.amazonaws.com/assets.datacamp.com/production/course_1939/datasets/gm_2008_region.csv'
urlretrieve(fn, 'gapminder.csv')df = pd.read_csv('gapminder.csv')df_region = pd.get_dummies(df)df_region = df_region.drop('Region_America', axis=1)X = df_region.drop('life', axis=1).valuesy = df_region['life'].values
# Import necessary modules
from sklearn.linear_model import Ridge
from sklearn.model_selection import cross_val_score# Instantiate a ridge regressor: ridge
ridge = Ridge(alpha=0.5, normalize=True)# Perform 5-fold cross-validation: ridge_cv
ridge_cv = cross_val_score(ridge, X, y, cv=5)# Print the cross-validated scores
print(ridge_cv)
[0.86808336 0.80623545 0.84004203 0.7754344  0.87503712]

Exercise

Dropping missing data

The voting dataset from Chapter 1 contained a bunch of missing values that we dealt with for you behind the scenes. Now, it’s time for you to take care of these yourself!

The unprocessed dataset has been loaded into a DataFrame df. Explore it in the IPython Shell with the .head()method. You will see that there are certain data points labeled with a '?'. These denote missing values. As you saw in the video, different datasets encode missing values in different ways. Sometimes it may be a '9999', other times a 0 - real-world data can be very messy! If you’re lucky, the missing values will already be encoded as NaN. We use NaNbecause it is an efficient and simplified way of internally representing missing data, and it lets us take advantage of pandas methods such as .dropna() and .fillna(), as well as scikit-learn’s Imputation transformer Imputer

这篇关于Datacamp 笔记代码 Supervised Learning with scikit-learn 第四章 Preprocessing and pipelines的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028848

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元