PE文件结构详解之头信息解析

2024-06-03 23:12

本文主要是介绍PE文件结构详解之头信息解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PE文件结构详解

  • 一、前言
    • 1.概述
    • 2.PE文件结构
    • 3.所用工具
  • 二、DOS头(DOS Header)解析
    • 1.作用
    • 2.图例
    • 3.参数详解
    • 4.总结
  • 三、DOS Stub
    • 1.作用
    • 2.图例
  • 四、NT头(NT Header)解析
    • 1.作用
    • 2.PE标识图例
    • 3.文件头(COFF头)图例
    • 4.可选头(Optional Header)图例
  • 五、区段头(Section Header)
    • 1.作用
    • 2.图例
  • 六、附C++解析源码

一、前言

1.概述

PE文件(Portable Executable File)是Windows上最常见的可执行文件,按文件后缀来说就是.exe.dll文件,还有一些其他的文件,例如.sys系统文件,不过最常见以及常用的就是.exe.dll,在初学阶段狭义上也可以就把PE文件就理解成.exe和.dll文件。

2.PE文件结构

  1. DOS头(DOS Header)
  2. DOS Stub
  3. NT头(NT Header)
    • PE标识(Signature)
    • 文件头(File Header)
    • 可选头(OptionHeader)
  4. 区段头(Section Header)

3.所用工具

WinHex-20.7-x86-x64.exe
PETool v1.0.0.5.exe
010EditorProtable


二、DOS头(DOS Header)解析

1.作用

  1. 兼容性: 让老的DOS系统识别这是一个可执行文件,即使它不能运行。
  2. 定位PE头: e_lfanew字段指向PE头的开始位置,操作系统通过这个字段找到PE文件的真正头部,从而加载和执行文件。

2.图例

范围:起始地址开始,长度64字节
我们可以通过使用WinHex软件来打开一个PE文件,其中如下图红框包裹的部分就是DOS头的内容,长度固定为64个字节。
在这里插入图片描述

3.参数详解

其中注释的内容不重要,可以忽略。

typedef struct _IMAGE_DOS_HEADER {      // DOS .EXE头WORD   e_magic;                     // 魔数(Magic number),固定MZ//WORD   e_cblp;                      // 文件最后一页的字节数//WORD   e_cp;                        // 文件中的页数//WORD   e_crlc;                      // 重定位项数目//WORD   e_cparhdr;                   // 头部大小,以段落(16字节)为单位//WORD   e_minalloc;                  // 程序所需的最小额外段数//WORD   e_maxalloc;                  // 程序所需的最大额外段数//WORD   e_ss;                        // 初始(相对)SS值//WORD   e_sp;                        // 初始SP值//WORD   e_csum;                      // 校验和//WORD   e_ip;                        // 初始IP值//WORD   e_cs;                        // 初始(相对)CS值//WORD   e_lfarlc;                    // 重定位表的文件地址//WORD   e_ovno;                      // 覆盖编号//WORD   e_res[4];                    // 保留字//WORD   e_oemid;                     // OEM标识符(用于e_oeminfo)//WORD   e_oeminfo;                   // OEM信息(由e_oemid指定)//WORD   e_res2[10];                  // 保留字LONG   e_lfanew;                    // 新EXE头的文件地址(PE头的偏移量)
} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

4.总结

其中的e_magic参数可以用来判断这个文件是不是PE文件。
e_lfanew表示的是新的PE头的偏移位置,例如程序的起始地址是0x01,e_lfanew的值是0xF0,那么新的PE头的位置就是0x01+0xF0。


三、DOS Stub

1.作用

一个典型的DOS Stub可能会包含一个简短的DOS程序,这个程序通常会执行以下操作:

  1. 显示一条消息,说明该程序需要在Windows环境下运行。
  2. 终止程序的执行。

约等于没有用,因为DOS Stub在windwos系统上是不会执行的。

2.图例

范围:DOS头后开始,至e_lfanew偏移量结束。
我们可以看到红框的右边解析的Ascii码,里面有这么一段文字。
This program cannot be run in DOS mode.
可得出结论这玩意在windows上没什么用,就是在DOS系统上显示消息用的。
范围为之后 至 e_lfanew偏移量之前。
在这里插入图片描述


四、NT头(NT Header)解析

1.作用

NT头,其中包含三个部分

  1. PE标识(PE签名,Signature)
  2. 标准文件头(COFF头,Common Object File Format Header)
  3. 可选头(Optional Header)

PE头就是我们PE文件的最重要的部分之一了,其中包含了很多重要的信息。

2.PE标识图例

范围:e_lfanew偏移量开始,长度4字节。
其中数据0x00004550(从小到大读)就是:
50=P
45=E
00=\0
00=\0
在这里插入图片描述

3.文件头(COFF头)图例

范围:PE标识开始,长度20字节
在这里插入图片描述
注释的内容不重要,可以忽略。

typedef struct _IMAGE_FILE_HEADER {WORD  Machine;              // 指定目标机器类型WORD  NumberOfSections;     // 文件中的节数//DWORD TimeDateStamp;        // 文件创建的时间戳//DWORD PointerToSymbolTable; // 指向符号表的指针(通常为0)//DWORD NumberOfSymbols;      // 符号表中的符号数(通常为0)WORD  SizeOfOptionalHeader; // 可选头的大小WORD  Characteristics;      // 文件的属性标志
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

4.可选头(Optional Header)图例

文件头开始,长度为文件头的SizeOfOptionalHeader属性
在这里插入图片描述
注释的内容不重要,可以忽略。
其中的DllCharacteristics中有一条DYNAMIC_BASE表示是否动态基址,可以用010 editor来查看这个值,如下图。
在这里插入图片描述

typedef struct _IMAGE_OPTIONAL_HEADER {WORD    Magic;                       // 标识文件类型,0x10B表示PE32,0x20B标识PE64
//    BYTE    MajorLinkerVersion;          // 链接器的主版本号
//    BYTE    MinorLinkerVersion;          // 链接器的次版本号
//    DWORD   SizeOfCode;                  // 所有代码节的总大小
//    DWORD   SizeOfInitializedData;       // 所有已初始化数据节的总大小
//    DWORD   SizeOfUninitializedData;     // 所有未初始化数据节的总大小DWORD   AddressOfEntryPoint;         // 程序入口点的地址(RVA)OEP
//    DWORD   BaseOfCode;                  // 代码节的起始地址(RVA)
//    DWORD   BaseOfData;                  // 数据节的起始地址(RVA)DWORD   ImageBase;                   // 首选的加载地址DWORD   SectionAlignment;            // 内存对齐大小DWORD   FileAlignment;               // 文件对齐大小
//    WORD    MajorOperatingSystemVersion; // 操作系统的主版本号
//    WORD    MinorOperatingSystemVersion; // 操作系统的次版本号
//    WORD    MajorImageVersion;           // 映像文件的主版本号
//    WORD    MinorImageVersion;           // 映像文件的次版本号
//    WORD    MajorSubsystemVersion;       // 子系统的主版本号
//    WORD    MinorSubsystemVersion;       // 子系统的次版本号
//    DWORD   Win32VersionValue;           // 保留字段,应为0DWORD   SizeOfImage;                 // 文件在内存中的大小,按照SectionAlignment对齐后DWORD   SizeOfHeaders;               // 所有头和节表(区段头)的总大小,按照FileAlignment对齐后
//    DWORD   CheckSum;                    // 校验和
//    WORD    Subsystem;                   // 子系统类型
//    WORD    DllCharacteristics;          // DLL的特性
//    DWORD   SizeOfStackReserve;          // 保留的栈大小
//    DWORD   SizeOfStackCommit;           // 初始提交的栈大小
//    DWORD   SizeOfHeapReserve;           // 保留的堆大小
//    DWORD   SizeOfHeapCommit;            // 初始提交的堆大小
//    DWORD   LoaderFlags;                 // 加载器标志,应为0DWORD   NumberOfRvaAndSizes;         // 数据目录的数量IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]; // 数据目录数组
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

五、区段头(Section Header)

1.作用

区段也成为“节”,区段头也叫节表
注释的不重要,可以忽略

2.图例

位置:可选头开始,区段头多个的,每个的固定大小为40个字节,区段头的数量存放在标准头的NumerOfSections属性

typedef struct _IMAGE_SECTION_HEADER {BYTE  Name[IMAGE_SIZEOF_SHORT_NAME];    // 节的名称,通常是一个8字节长的字符串,如“.text”、“.data”等
//    union {
//        DWORD PhysicalAddress;              // 物理地址,不常用
//        DWORD VirtualSize;                  // 节在内存中的实际大小
//    } Misc;DWORD VirtualAddress;                   // 区段在内存中的偏移位值
//    DWORD SizeOfRawData;                    // 区段在文件中对齐后的大小,文件对齐(File Alignment)后的大小DWORD PointerToRawData;                 // 区段在文件中的偏移值
//    DWORD PointerToRelocations;             // 重定位信息表在文件中的位置偏移,通常为0
//    DWORD PointerToLinenumbers;             // 行号信息在文件中的位置偏移,调试信息相关,通常为0
//    WORD  NumberOfRelocations;              // 重定位项的数量
//    WORD  NumberOfLinenumbers;              // 行号信息的数量DWORD Characteristics;                  // 节的属性标志,描述节的特性(可执行、可读、可写等)
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER; 

六、附C++解析源码

C++解析PE文件源码github地址

这篇关于PE文件结构详解之头信息解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028382

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所