PE文件结构详解之头信息解析

2024-06-03 23:12

本文主要是介绍PE文件结构详解之头信息解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PE文件结构详解

  • 一、前言
    • 1.概述
    • 2.PE文件结构
    • 3.所用工具
  • 二、DOS头(DOS Header)解析
    • 1.作用
    • 2.图例
    • 3.参数详解
    • 4.总结
  • 三、DOS Stub
    • 1.作用
    • 2.图例
  • 四、NT头(NT Header)解析
    • 1.作用
    • 2.PE标识图例
    • 3.文件头(COFF头)图例
    • 4.可选头(Optional Header)图例
  • 五、区段头(Section Header)
    • 1.作用
    • 2.图例
  • 六、附C++解析源码

一、前言

1.概述

PE文件(Portable Executable File)是Windows上最常见的可执行文件,按文件后缀来说就是.exe.dll文件,还有一些其他的文件,例如.sys系统文件,不过最常见以及常用的就是.exe.dll,在初学阶段狭义上也可以就把PE文件就理解成.exe和.dll文件。

2.PE文件结构

  1. DOS头(DOS Header)
  2. DOS Stub
  3. NT头(NT Header)
    • PE标识(Signature)
    • 文件头(File Header)
    • 可选头(OptionHeader)
  4. 区段头(Section Header)

3.所用工具

WinHex-20.7-x86-x64.exe
PETool v1.0.0.5.exe
010EditorProtable


二、DOS头(DOS Header)解析

1.作用

  1. 兼容性: 让老的DOS系统识别这是一个可执行文件,即使它不能运行。
  2. 定位PE头: e_lfanew字段指向PE头的开始位置,操作系统通过这个字段找到PE文件的真正头部,从而加载和执行文件。

2.图例

范围:起始地址开始,长度64字节
我们可以通过使用WinHex软件来打开一个PE文件,其中如下图红框包裹的部分就是DOS头的内容,长度固定为64个字节。
在这里插入图片描述

3.参数详解

其中注释的内容不重要,可以忽略。

typedef struct _IMAGE_DOS_HEADER {      // DOS .EXE头WORD   e_magic;                     // 魔数(Magic number),固定MZ//WORD   e_cblp;                      // 文件最后一页的字节数//WORD   e_cp;                        // 文件中的页数//WORD   e_crlc;                      // 重定位项数目//WORD   e_cparhdr;                   // 头部大小,以段落(16字节)为单位//WORD   e_minalloc;                  // 程序所需的最小额外段数//WORD   e_maxalloc;                  // 程序所需的最大额外段数//WORD   e_ss;                        // 初始(相对)SS值//WORD   e_sp;                        // 初始SP值//WORD   e_csum;                      // 校验和//WORD   e_ip;                        // 初始IP值//WORD   e_cs;                        // 初始(相对)CS值//WORD   e_lfarlc;                    // 重定位表的文件地址//WORD   e_ovno;                      // 覆盖编号//WORD   e_res[4];                    // 保留字//WORD   e_oemid;                     // OEM标识符(用于e_oeminfo)//WORD   e_oeminfo;                   // OEM信息(由e_oemid指定)//WORD   e_res2[10];                  // 保留字LONG   e_lfanew;                    // 新EXE头的文件地址(PE头的偏移量)
} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

4.总结

其中的e_magic参数可以用来判断这个文件是不是PE文件。
e_lfanew表示的是新的PE头的偏移位置,例如程序的起始地址是0x01,e_lfanew的值是0xF0,那么新的PE头的位置就是0x01+0xF0。


三、DOS Stub

1.作用

一个典型的DOS Stub可能会包含一个简短的DOS程序,这个程序通常会执行以下操作:

  1. 显示一条消息,说明该程序需要在Windows环境下运行。
  2. 终止程序的执行。

约等于没有用,因为DOS Stub在windwos系统上是不会执行的。

2.图例

范围:DOS头后开始,至e_lfanew偏移量结束。
我们可以看到红框的右边解析的Ascii码,里面有这么一段文字。
This program cannot be run in DOS mode.
可得出结论这玩意在windows上没什么用,就是在DOS系统上显示消息用的。
范围为之后 至 e_lfanew偏移量之前。
在这里插入图片描述


四、NT头(NT Header)解析

1.作用

NT头,其中包含三个部分

  1. PE标识(PE签名,Signature)
  2. 标准文件头(COFF头,Common Object File Format Header)
  3. 可选头(Optional Header)

PE头就是我们PE文件的最重要的部分之一了,其中包含了很多重要的信息。

2.PE标识图例

范围:e_lfanew偏移量开始,长度4字节。
其中数据0x00004550(从小到大读)就是:
50=P
45=E
00=\0
00=\0
在这里插入图片描述

3.文件头(COFF头)图例

范围:PE标识开始,长度20字节
在这里插入图片描述
注释的内容不重要,可以忽略。

typedef struct _IMAGE_FILE_HEADER {WORD  Machine;              // 指定目标机器类型WORD  NumberOfSections;     // 文件中的节数//DWORD TimeDateStamp;        // 文件创建的时间戳//DWORD PointerToSymbolTable; // 指向符号表的指针(通常为0)//DWORD NumberOfSymbols;      // 符号表中的符号数(通常为0)WORD  SizeOfOptionalHeader; // 可选头的大小WORD  Characteristics;      // 文件的属性标志
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

4.可选头(Optional Header)图例

文件头开始,长度为文件头的SizeOfOptionalHeader属性
在这里插入图片描述
注释的内容不重要,可以忽略。
其中的DllCharacteristics中有一条DYNAMIC_BASE表示是否动态基址,可以用010 editor来查看这个值,如下图。
在这里插入图片描述

typedef struct _IMAGE_OPTIONAL_HEADER {WORD    Magic;                       // 标识文件类型,0x10B表示PE32,0x20B标识PE64
//    BYTE    MajorLinkerVersion;          // 链接器的主版本号
//    BYTE    MinorLinkerVersion;          // 链接器的次版本号
//    DWORD   SizeOfCode;                  // 所有代码节的总大小
//    DWORD   SizeOfInitializedData;       // 所有已初始化数据节的总大小
//    DWORD   SizeOfUninitializedData;     // 所有未初始化数据节的总大小DWORD   AddressOfEntryPoint;         // 程序入口点的地址(RVA)OEP
//    DWORD   BaseOfCode;                  // 代码节的起始地址(RVA)
//    DWORD   BaseOfData;                  // 数据节的起始地址(RVA)DWORD   ImageBase;                   // 首选的加载地址DWORD   SectionAlignment;            // 内存对齐大小DWORD   FileAlignment;               // 文件对齐大小
//    WORD    MajorOperatingSystemVersion; // 操作系统的主版本号
//    WORD    MinorOperatingSystemVersion; // 操作系统的次版本号
//    WORD    MajorImageVersion;           // 映像文件的主版本号
//    WORD    MinorImageVersion;           // 映像文件的次版本号
//    WORD    MajorSubsystemVersion;       // 子系统的主版本号
//    WORD    MinorSubsystemVersion;       // 子系统的次版本号
//    DWORD   Win32VersionValue;           // 保留字段,应为0DWORD   SizeOfImage;                 // 文件在内存中的大小,按照SectionAlignment对齐后DWORD   SizeOfHeaders;               // 所有头和节表(区段头)的总大小,按照FileAlignment对齐后
//    DWORD   CheckSum;                    // 校验和
//    WORD    Subsystem;                   // 子系统类型
//    WORD    DllCharacteristics;          // DLL的特性
//    DWORD   SizeOfStackReserve;          // 保留的栈大小
//    DWORD   SizeOfStackCommit;           // 初始提交的栈大小
//    DWORD   SizeOfHeapReserve;           // 保留的堆大小
//    DWORD   SizeOfHeapCommit;            // 初始提交的堆大小
//    DWORD   LoaderFlags;                 // 加载器标志,应为0DWORD   NumberOfRvaAndSizes;         // 数据目录的数量IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]; // 数据目录数组
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

五、区段头(Section Header)

1.作用

区段也成为“节”,区段头也叫节表
注释的不重要,可以忽略

2.图例

位置:可选头开始,区段头多个的,每个的固定大小为40个字节,区段头的数量存放在标准头的NumerOfSections属性

typedef struct _IMAGE_SECTION_HEADER {BYTE  Name[IMAGE_SIZEOF_SHORT_NAME];    // 节的名称,通常是一个8字节长的字符串,如“.text”、“.data”等
//    union {
//        DWORD PhysicalAddress;              // 物理地址,不常用
//        DWORD VirtualSize;                  // 节在内存中的实际大小
//    } Misc;DWORD VirtualAddress;                   // 区段在内存中的偏移位值
//    DWORD SizeOfRawData;                    // 区段在文件中对齐后的大小,文件对齐(File Alignment)后的大小DWORD PointerToRawData;                 // 区段在文件中的偏移值
//    DWORD PointerToRelocations;             // 重定位信息表在文件中的位置偏移,通常为0
//    DWORD PointerToLinenumbers;             // 行号信息在文件中的位置偏移,调试信息相关,通常为0
//    WORD  NumberOfRelocations;              // 重定位项的数量
//    WORD  NumberOfLinenumbers;              // 行号信息的数量DWORD Characteristics;                  // 节的属性标志,描述节的特性(可执行、可读、可写等)
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER; 

六、附C++解析源码

C++解析PE文件源码github地址

这篇关于PE文件结构详解之头信息解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028382

相关文章

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar