python情感分析库-snownlp

2024-06-03 21:44
文章标签 python 分析 情感 snownlp

本文主要是介绍python情感分析库-snownlp,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容目录

        • 一、words方法
        • 二、sentences方法
        • 三、han方法
        • 四、pinyin方法
        • 五、sentiments方法
        • 六、tags方法
        • 七、tf方法和idf方法
        • 八、summary方法
        • 九、keywords方法

SnowNLP 是一个简易的 Python 库,主要用于处理中文文本数据,提供了多种实用的功能。

源码中提供了一些方法:

class SnowNLP(object):def __init__(self, doc):self.doc = docself.bm25 = bm25.BM25(doc)@propertydef words(self):# 功能: 对输入的文本进行分词,返回一个包含所有分词结果的列表。pass@propertydef sentences(self):# 功能: 将文本分割成句子,返回一个包含所有句子的列表。pass@propertydef han(self):pass@propertydef pinyin(self):# 功能: 返回文本的拼音形式,返回一个列表pass@propertydef sentiments(self):# 功能: 进行情感分析,返回一个介于0到1之间的浮点数,表示文本的情感倾向,接近1表示正面情绪,接近0表示负面情绪。pass@propertydef tags(self):# 功能: 返回文本中每个词语的词性标注,通常以列表形式给出,每个元素是一个包含词语和对应词性的元组。pass@propertydef tf(self):# 功能: 计算词频(Term Frequency),返回一个字典,键是词语,值是该词语在文本中的出现频率。pass@propertydef idf(self):# 功能: 计算逆文档频率(Inverse Document Frequency)passdef sim(self, doc):# 功能: 计算两个文本的相似度,返回一个介于0到1之间的浮点数,值越接近1表示两个文本越相似。passdef summary(self, limit=5):# 功能: 提供文本摘要功能passdef keywords(self, limit=5, merge=False):# 功能: 提取文本中的关键词,返回一个按相关性排序的关键词列表。pass

详细使用说明

一、words方法

功能: 对输入的文本进行分词,返回一个包含所有分词结果的列表。
分词一般会使用jieba, 但是snownlp本身也提供了此类功能
使用方法:

from snownlp import SnowNLPtext = "解决这个问题的关键是先找到关键的问题"
s = SnowNLP(text)
words_list = s.words
print(words_list)
# ['解决', '这个', '问题', '的', '关键', '是', '先', '找', '到', '关键', '的', '问题']

源码解释:
底层调用了seg中的seg方法

@property
def words(self):return seg.seg(self.doc)
re_zh = re.compile('([\u4E00-\u9FA5]+)')def seg(sent):words = []for s in re_zh.split(sent):s = s.strip()if not s:continueif re_zh.match(s):words += single_seg(s)else:for word in s.split():word = word.strip()if word:words.append(word)return words# 其中又调用了segger中的single_seg()方法
def single_seg(sent):return list(segger.seg(sent))# 其中又调用了seg方法
def seg(self, sentence):ret = self.segger.tag(sentence)tmp = ''for i in ret:if i[1] == 'e':yield tmp+i[0]tmp = ''elif i[1] == 'b' or i[1] == 's':if tmp:yield tmptmp = i[0]else:tmp += i[0]if tmp:yield tmp

以上可以看出, 分词处理其实是根据词性进行划分的

二、sentences方法

功能: 将文本分割成句子,返回一个包含所有句子的列表。

from snownlp import SnowNLPtext = "解决这个问题的关键,是先找到关键的问题"
s = SnowNLP(text)
print(s.sentences)
# ['解决这个问题的关键', '是先找到关键的问题']
三、han方法

功能: 繁体转简体

from snownlp import SnowNLPs = SnowNLP("這個姑娘真好看")
print(s.han)
# 这个姑娘真好看
四、pinyin方法

功能: 中文转拼音, 返回一个列表

from snownlp import SnowNLPtext = "解决这个问题的关键,是先找到关键的问题"
s = SnowNLP(text)
print(s.pinyin)
五、sentiments方法

功能: 进行情感分析,返回一个介于0到1之间的浮点数,表示文本的情感倾向,接近1表示正面情绪,接近0表示负面情绪。

from snownlp import SnowNLPtext = "解决这个问题的关键,是先找到关键的问题"
s = SnowNLP(text)
print(s.sentiments) # 0.4619828689317872s = SnowNLP("上班好快乐")
print(s.sentiments) # 0.93885208707686s = SnowNLP("这工作狗都不干")
print(s.sentiments) # 0.2205915558008712
六、tags方法

功能: 返回文本中每个词语的词性标注,通常以列表形式给出,每个元素是一个包含词语和对应词性的元组。

@property
def tags(self):words = self.wordstags = tag.tag(words)return zip(words, tags)
from snownlp import SnowNLPtext = "解决这个问题的关键,是先找到关键的问题"
s = SnowNLP(text)
for ele in s.tags:print(ele)
# ('解决', 'v')
# ('这个', 'r')
# ('问题', 'n')
# ('的', 'u')
# ('关键', 'n')
# (',', 'w')
# ('是', 'v')
# ('先', 'd')
# ('找', 'v')
# ('到', 'v')
# ('关键', 'a')
# ('的', 'u')
# ('问题', 'n')
七、tf方法和idf方法

TF-IDF由两部分组成

Term Frequency (TF): 词频,指的是某一个给定的词语在该文件中出现的频率。这个数字是对词数(term count)的归一化,以防止它偏向长的文件。(同一个词语在长文件里可能会比短文件有更高的词数,而不管该词语在两个文件中的重要程度是否相同。)

Inverse Document Frequency (IDF): 逆文档频率,是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。
功能: 计算词频(Term Frequency)和 计算逆文档频率(Inverse Document Frequency)

from snownlp import SnowNLPtext = "解决这个问题的关键,是先找到关键的问题"
s = SnowNLP(text)
print(s.tf)
print(s.idf)
# [{'解': 1}, {'决': 1}, {'这': 1}, {'个': 1}, {'问': 1}, {'题': 1}, {'的': 1}, {'关': 1}, {'键': 1}, {',': 1}, {'是': 1}, {'先': 1}, {'找': 1}, {'到': 1}, {'关': 1}, {'键': 1}, {'的': 1}, {'问': 1}, {'题': 1}]
# {'解': 2.512305623976115, '决': 2.512305623976115, '这': 2.512305623976115, '个': 2.512305623976115, '问': 1.9459101490553135, '题': 1.9459101490553135, '的': 1.9459101490553135, '关': 1.9459101490553135, '键': 1.9459101490553135, ',': 2.512305623976115, '是': 2.512305623976115, '先': 2.512305623976115, '找': 2.512305623976115, '到': 2.512305623976115}
八、summary方法

功能: 提供文本摘要功能
支持传入一个参数, 限制输出的数量

from snownlp import SnowNLPs = SnowNLP("解决这个问题的关键,是先找到关键的问题")
print(s.summary(5))
# ['解决这个问题的关键', '是先找到关键的问题']
九、keywords方法

功能: 提取文本中的关键词,返回一个按相关性排序的关键词列表。

from snownlp import SnowNLPs = SnowNLP("解决这个问题的关键,是先找到关键的问题")
print(s.keywords(5))
# ['关键', '先', '找', '解决']

和summary的区别在于summary断句, 而keywords断词

这篇关于python情感分析库-snownlp的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028194

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3