QAnything-1.4.01.4.1版本更新!使用指北!

2024-06-03 20:20

本文主要是介绍QAnything-1.4.01.4.1版本更新!使用指北!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

久等了各位!时隔一个多月,我们在4月26日和5月20日接连发布了v1.4.0和v1.4.1两个版本,带来了问答性能,解析效果等多方面的改进,并新增了大量的新功能和新特性

详见:releases 以及 使用说明

最新特性表

图片

开发背景:

在v1.0.x->v1.3.x的版本迭代过程中,通过分析用户反馈,我们发现绝大部分的问题都是在使用本地大模型时产生的,因此我们把相当一部分工作重心放在了本地大模型的适配上

在这个目标下做了一系列的工作:

  • 自动检测显卡的型号,计算能力和内存大小,并根据情况自动调整默认启动参数,以提供用户最佳体验,并给予相关提示。

  • 支持Nvidia下全系列显卡,并根据用户硬件条件推荐本地大模型Size(3B,7B等)。

  • 提供3种LLM推理运行后端:包括FasterTransformer(默认)、huggingface和vllm,通过FastChat Server API支持加载各种开源大模型。

  • 提供纯python版本,自动根据运行环境切换本地大模型,模型自动下载等。

确实解决了一部分问题,但是随后我们发现这种做法类似于打地鼠,我们写的自动化逻辑本意是帮助用户减少手动操作的时间,尽量自动化运行QAnything,这个过程中添加了繁杂的检测和判断逻辑,但是相比用户使用场景的复杂性还远远不够,截止至v1.3.3版本发布,最多的问题仍然是本地模型运行过程中与系统软硬件环境产生的冲突,同时我们还发现大量用户存在使用自定义模型的需求,并不需要我们内置本地大模型(我们考虑到大部分个人用户的硬件条件,内置大模型主要是3B和7B的,实际使用效果欠佳),因此我们及时改变策略,将大模型这块独立出来,仅提供基础的本地大模型,同时提供更方便的使用其他开源大模型的接口,把工作重心放在增加更多的大模型衍生功能,同时进一步降低用户使用门槛上。

新发布的V1.4.0&V1.4.1将新增如下新特性:

  • 新增联网检索

  • 支持FAQ问答

  • 支持自定义Bot

  • 支持语音文件

  • 支持文件溯源

  • 支持问答日志检索

  • 支持国产OS(OpenCloudOS)

  • 支持所有与OpenAI-API兼容的大模型服务(包含ollama,通义千问DashScope等)

  • 支持多卡推理

  • PDF文件解析效果优化(包含表格效果)

以及部分使用上的改进,包括服务启动时间优化,资源占用优化,修复已知问题等

联网检索

注意:联网检索依赖于第三方库:GitHub - deedy5/duckduckgo_search

duckduckgo_search使用依赖外网VPN,如无法获取外网VPN请在前端页面关闭联网检索功能,防止报错。

未开启联网检索:

图片

开启联网检索:

图片

API调用:


import sysimport requestsimport timedef send_request():url = 'http://{your_host}:8777/api/local_doc_qa/local_doc_chat'headers = {'content-type': 'application/json'}data = {"user_id": "zzp","kb_ids": ["KBf652e9e379c546f1894597dcabdc8e47"],"question": "介绍一下韦小宝","networking": True  # True开启联网检索}try:start_time = time.time()response = requests.post(url=url, headers=headers, json=data, timeout=60)end_time = time.time()res = response.json()print(res['response'])print(f"响应状态码: {response.status_code}, 响应时间: {end_time - start_time}秒")except Exception as e:print(f"请求发送失败: {e}")if __name__ == '__main__':send_request()

FAQ问答

FAQ问答流程和普通问答一致,区别在于FAQ文件需要单独在问答集页面上传,支持手动输入以及excel文件上传两种方式

手动输入:

图片

Excel上传:

图片

编辑FAQ内容

图片

此时针对知识库的问答会同时检索文档集和问答集:

图片

API调用:

import osimport requestsurl = "http://{your_host}:8777/api/local_doc_qa/upload_faqs"folder_path = "./xlsx_data"  # 文件所在文件夹,注意是文件夹!!data = {"user_id": "zzp","kb_id": "KB6dae785cdd5d47a997e890521acbe1c9_FAQ",}files = []for root, dirs, file_names in os.walk(folder_path):for file_name in file_names:if file_name.endswith(".xlsx"):file_path = os.path.join(root, file_name)files.append(("files", open(file_path, "rb")))response = requests.post(url, files=files, data=data)print(response.text)

备注:

FAQ上传单次默认最多处理1000行,可手动修改这个限制,仅影响请求处理速度,太多可能会超时

支持自定义Bot

图片

图片

分享页面:

图片

API调用:

创建Bot

获取Bot信息

修改Bot信息

删除Bot信息

支持语音文件

支持解析MP3和WAV格式文件(依赖faster_whisper,解析速度慢,建议控制语音时长在60秒内)

图片

支持文件溯源

目前仅支持以下格式的文件溯源:

pdf,docx,xlsx,txt,jpg,png,jpeg,联网检索网络链接等,其他类型后续将尽快支持

图片

图片

支持问答日志检索(API)

目前仅支持API检索,后续将提供前端页面操作:检索API

import requestsimport jsonurl = "http://{your_host}:8777/api/local_doc_qa/get_qa_info"headers = {"Content-Type": "application/json"}data = {"user_id": "zzp","kb_ids": ["KBe3f7b698208645218e787d2eee2eae41"],"time_start": "2024-04-01","time_end": "2024-04-29","query": "韦小宝住址","need_info": ["user_id"]}response = requests.post(url, headers=headers, data=json.dumps(data))print(response.status_code)print(response.text)

支持国产OS(OpenCloudOS)

OpenCloudOS是腾讯自研的国产操作系统:官网

OpenCloud 需要在 Docker 容器中运行,请先安装 Docker:Docker 版本 >= 20.10.5 且 docker-compose 版本 >= 2.23.3

git clone -b qanything-python https://github.com/netease-youdao/QAnything.gitcd QAnythingdocker-compose up -ddocker attach qanything-containerpip install -r requirements.txt# 随后启动方式与正常使用一致:https://github.com/netease-youdao/QAnything/blob/master/QAnything%E4%BD%BF%E7%94%A8%E8%AF%B4%E6%98%8E.md#%E5%9C%A8windows-wsl%E6%88%96linux%E7%8E%AF%E5%A2%83%E4%B8%8B%E8%BF%90%E8%A1%8C3b%E5%A4%A7%E6%A8%A1%E5%9E%8Bminichat-2-3b%E8%A6%81%E6%B1%82%E6%98%BE%E5%AD%9810gb

支持所有与OpenAI-API兼容的大模型服务(包含ollama,通义千问DashScope等)

docker版OpenaiAI接口兼容

bash ./run.sh -c cloud -i 0

# 手动输入api_key,base_url,model_name,context_length,除了api_key外均有默认值,且用户输入会自动保存,下次启动不用再次输入

图片

支持任意与OpenaAI接口兼容的服务

通义千问DashScope支持:通义千问DashScopeAPI

# 示例

openai_api_key = "sk-xxx"

openai_api_base = "https://dashscope.aliyuncs.com/compatible-mode/v1"

openai_model_name = "qwen1.5-72b-chat"

ollama支持:本地启动ollama服务

# 例如,当本地运行ollama run qwen:32b

openai_api_key = "ollama"

openai_api_base = "http://localhost:11434/v1"

openai_api_model_name = "qwen:32b"

python版OpenaiAI接口兼容

支持任意与OpenaAI接口兼容的服务


# Linux或WSL上,注意cpu模式需要加-c参数bash scripts/base_run.sh -s "LinuxOrWSL" -w 4 -m 19530 -q 8777 -o -b 'https://api.openai.com/v1' -k 'sk-xxx' -n 'gpt-3.5-turbo' -l '4096'# Mac上bash scripts/base_run.sh -s "M1mac" -w 2 -m 19530 -q 8777 -o -b 'https://api.openai.com/v1' -k 'sk-xxx' -n 'gpt-3.5-turbo' -l '4096'

通义千问DashScope支持:通义千问DashScopeAPI 自定义

scripts/run_for_openai_api_xxx.sh内容为:

# Linux或WSL上,注意cpu模式需要加-c参数bash scripts/base_run.sh -s "LinuxOrWSL" -w 4 -m 19530 -q 8777 -o -b 'https://dashscope.aliyuncs.com/compatible-mode/v1' -k 'sk-xxx' -n 'qwen1.5-72b-chat' -l '4096'# Mac上bash scripts/base_run.sh -s "M1mac" -w 2 -m 19530 -q 8777 -o -b 'https://dashscope.aliyuncs.com/compatible-mode/v1' -k 'sk-xxx' -n 'qwen1.5-72b-chat' -l '4096'

ollama支持:本地启动ollama服务 自定义scripts/run_for_openai_api_xxx.sh内容为:

# Linux或WSL上,注意cpu模式需要加-c参数bash scripts/base_run.sh -s "LinuxOrWSL" -w 4 -m 19530 -q 8777 -o -b 'http://localhost:11434/v1' -k 'ollama' -n 'qwen:32b' -l '4096'# Mac上bash scripts/base_run.sh -s "M1mac" -w 2 -m 19530 -q 8777 -o -b 'http://localhost:11434/v1' -k 'ollama' -n 'qwen:32b' -l '4096'

支持多卡推理(仅支持docker版):

# 当使用默认后端时:(bash run.sh启动时不指定-b参数或-b参数为default)

无法使用多卡推理大模型,仅支持使用两张卡省显存

bash ./run.sh -c local -i 0,1 -b defaul  # 此时的显存使用逻辑为第一张卡部署大模型,第二张卡部署embedding,rerank,和ocr模型,实际意义不大

# 当使用huggingface或vllm后端时支持多卡推理大模型

# 以下示例为两张卡启动,默认embedding,部署在第一张卡上,rerank,ocr模型部署在第二张卡上,两张卡剩余显存均会用于LLM推理

bash ./run.sh -c local -i 0,1 -b default  # 指定0,1号GPU启动,请确认有多张GPU可用,注意设备数量必须是1,2,4,8,16,否则显存无法正常分配

说明:多卡部署是指大模型运行平均分配显存到多张显卡上,但是由于embedding,rerank和ocr模型也需要占用显存(共需4G+显存,启动时占用2G显存,运行后会逐渐上涨至4G左右),目前这三个模型默认会分配到前两个设备上,所以第一张,第二张显卡的显存占用会比其他卡多2G以上,默认启动参数-r(gpu_memory_utilization)=0.81,如果手动设置为0.9以上可能会存在前两张卡显存不足无法启动或启动后运行时显存不足报错的情况

PDF文件解析效果优化(包含表格效果)

表格优化前:

图片

表格优化后:

图片

文字优化前:

图片

文字优化后:

图片

所有上传的文档以及文档解析后的结果均会保存在项目根目录下的QANY_DB文件夹中,示例如下,可自行查看解析结果:

> pwd

/Users/liujunxiong/workspace/ai_team/qanything-open-source/QANY_DB/content/zzp/e396215cddf44df9bdde7ef3dbf75ad4

> ls -R

QAnything使用说明.pdf     QAnything使用说明_1716194377

./QAnything使用说明_1716194377:

QAnything使用说明.json     QAnything使用说明_md

./QAnything使用说明_1716194377/QAnything使用说明_md:

QAnything使用说明.md

注意:优化的PDF解析器需要手动开启:详情

更多信息可见:QAnything开源代码地址:GitHub - netease-youdao/QAnything: Question and Answer based on Anything.

线上直接体验:https://qanything.ai

这篇关于QAnything-1.4.01.4.1版本更新!使用指北!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028018

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三