详解布隆过滤器,实现分布式布隆过滤器

2024-06-03 19:52

本文主要是介绍详解布隆过滤器,实现分布式布隆过滤器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是布隆过滤器?

原理

布隆过滤器是一种基于位数组(bit array)和多个哈希函数的数据结构。其核心原理是:

  1. 初始化一个长度为m的位数组,所有位初始化为0。
  2. 使用k个不同的哈希函数将元素映射到位数组中的k个位置。
  3. 当插入一个元素时,使用k个哈希函数计算该元素的k个哈希值,并将位数组中对应位置的值设为1。
  4. 当查询一个元素是否存在时,使用同样的k个哈希函数计算该元素的k个哈希值,并检查位数组中对应位置的值是否都为1。如果有一个位置的值为0,则该元素肯定不在集合中;如果所有位置的值都为1,则该元素可能在集合中。  

优点

  1. 空间效率高:布隆过滤器通过使用位数组和哈希函数,可以在相对较小的空间内表示一个大型集合。这使得它特别适合内存受限的应用场景。

  2. 插入和查询速度快:插入和查询操作都只需要O(k)的时间复杂度(k为哈希函数的数量),非常高效。哈希函数的计算和位数组的访问都可以在常数时间内完成。

  3. 无需存储实际元素:布隆过滤器只需要存储哈希值,并不需要存储实际的元素数据,因此它能有效地节省存储空间。

  4. 适用于分布式系统:布隆过滤器可以轻松地分布在多个节点上,通过分布式哈希算法进行管理,适用于大规模分布式系统。

  5. 扩展性好:一些扩展版本的布隆过滤器,如可扩展布隆过滤器(Scalable Bloom Filter),可以动态调整大小,适应不断增长的数据集。

缺点

  1. 存在误判率:布隆过滤器有一定的误判率,即可能会误判一个不在集合中的元素为存在。误判率取决于位数组的大小、哈希函数的数量和存储的元素数量。这是由于哈希冲突产生的。

  2. 无法删除元素:基本布隆过滤器不支持删除操作,因为无法确定一个位置上的1是由哪个元素设置的。虽然计数布隆过滤器(Counting Bloom Filter)可以支持删除操作,但代价是需要更多的空间。

  3. 初始化参数选择复杂:选择合适的位数组大小和哈希函数数量是一个复杂的问题。位数组太小或哈希函数数量太少会增加误判率,而位数组太大或哈希函数数量太多则会浪费空间和时间。

  4. 不适用于动态集:基本布隆过滤器在初始化时需要确定位数组的大小,这对于元素数量动态变化的场景并不友好。可扩展布隆过滤器虽然可以动态调整大小,但实现较为复杂。

  5. 不支持元素的完整存储和检索:布隆过滤器只能判断元素是否存在于集合中,无法存储和检索元素的实际内容。

应用场景

布隆过滤器在很多应用场景中都有广泛的应用:

  1. 缓存系统:在缓存系统中,布隆过滤器可以用来快速判断一个请求是否命中缓存,避免不必要的数据库查询,解决缓存穿透问题。

  2. 垃圾邮件过滤:邮件系统可以使用布隆过滤器来快速判断一封邮件是否是垃圾邮件。

  3. 网络爬虫:在网络爬虫中,布隆过滤器可以用来记录已经访问过的URL,避免重复抓取。

  4. 数据库去重:在大规模数据处理中,布隆过滤器可以用来快速判断一个记录是否已经存在,避免重复存储。

  5. 分布式系统:在分布式系统中,布隆过滤器可以用来快速判断一个数据是否存在于某个节点上,提高查询效率。

布隆过滤器的实现

常用的几种有单体项目下,使用Guava包下的BloomFilter,分布式下使用Redission的RBloomFilter,这些都是写好的布隆过滤器,接下来将基于redis和jedis实现一个手写的分布式布隆过滤器

分布式布隆过滤器的实现

分布式布隆过滤器在大规模分布式系统中应用广泛,它的实现主要涉及以下几个方面:

  1. 位数组的分布:将位数组分布在多个节点上,每个节点存储部分位数组。
  2. 哈希函数:使用多个哈希函数来保证均匀分布。
  3. 一致性哈希:用来管理节点和数据之间的映射关系,保证负载均衡和容错。

分布式哈希算法

一致性哈希是一种用于分布式系统的哈希算法,能够有效地应对节点动态加入和退出的情况。它通过将所有节点和数据哈希到一个环上来实现数据的分布。主要包含以下步骤:

  1. 哈希环:将整个哈希空间组织成一个环,环的大小通常是哈希函数的输出范围。
  2. 节点哈希:将每个节点通过哈希函数映射到环上的一个点。
  3. 数据哈希:将每个数据通过相同的哈希函数映射到环上的一个点。
  4. 数据存储:数据存储在顺时针方向遇到的第一个节点上。
  5. 节点变动处理
    • 节点加入:重新分配一部分数据给新节点。
    • 节点退出:将其数据重新分配给其他节点。

分布式布隆过滤器的实现

下面是用Java和Jedis实现的分布式布隆过滤器示例。我们使用一致性哈希来分配数据,并用Redis存储位数组。

1. 一致性哈希实现

import java.util.SortedMap;
import java.util.TreeMap;public class ConsistentHashing {private final SortedMap<Integer, String> circle = new TreeMap<>();private final int replicas;public ConsistentHashing(int replicas) {this.replicas = replicas;}public void addNode(String node) {for (int i = 0; i < replicas; i++) {circle.put((node + i).hashCode(), node);}}public void removeNode(String node) {for (int i = 0; i < replicas; i++) {circle.remove((node + i).hashCode());}}public String getNode(String key) {if (circle.isEmpty()) {return null;}int hash = key.hashCode();if (!circle.containsKey(hash)) {SortedMap<Integer, String> tailMap = circle.tailMap(hash);hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();}return circle.get(hash);}
}

2. 分布式布隆过滤器实现 

import redis.clients.jedis.Jedis;
import java.nio.charset.StandardCharsets;
import com.google.common.hash.Hashing;public class DistributedBloomFilter {private ConsistentHashing consistentHashing;private int size;private int numHashFunctions;public DistributedBloomFilter(int replicas, int size, int numHashFunctions) {this.consistentHashing = new ConsistentHashing(replicas);this.size = size;this.numHashFunctions = numHashFunctions;}public void addNode(String host, int port) {consistentHashing.addNode(host + ":" + port);}public void removeNode(String host, int port) {consistentHashing.removeNode(host + ":" + port);}private static int[] getHashes(String value, int numHashes, int maxSize) {int[] hashes = new int[numHashes];for (int i = 0; i < numHashes; i++) {hashes[i] = Math.abs(Hashing.murmur3_128(i).hashString(value, StandardCharsets.UTF_8).asInt() % maxSize);}return hashes;}private Jedis getJedisClient(String value) {// 使用一致性哈希算法找到合适的节点String node = consistentHashing.getNode(value);// 解析节点信息并创建Jedis客户端实例String[] parts = node.split(":");return new Jedis(parts[0], Integer.parseInt(parts[1]));}public void add(String value) {// 计算哈希值int[] hashes = getHashes(value, numHashFunctions, size);try (Jedis jedis = getJedisClient(value)) {// 设置位数组的对应位置for (int hash : hashes) {jedis.setbit("bloom_filter", hash, true);}}}public boolean contains(String value) {// 计算哈希值int[] hashes = getHashes(value, numHashFunctions, size);try (Jedis jedis = getJedisClient(value)) {// 查询位数组的对应位置for (int hash : hashes) {if (!jedis.getbit("bloom_filter", hash)) {return false;}}}return true;}public static void main(String[] args) {// 创建布隆过滤器实例DistributedBloomFilter bloomFilter = new DistributedBloomFilter(3, 1000, 5);// 添加Redis节点bloomFilter.addNode("localhost", 6379);bloomFilter.addNode("localhost", 6380);bloomFilter.addNode("localhost", 6381);// 插入元素bloomFilter.add("apple");bloomFilter.add("banana");// 查询元素System.out.println(bloomFilter.contains("apple"));  // 输出: trueSystem.out.println(bloomFilter.contains("banana")); // 输出: trueSystem.out.println(bloomFilter.contains("cherry")); // 输出: false}
}

这篇关于详解布隆过滤器,实现分布式布隆过滤器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027951

相关文章

MySQL 8 中的一个强大功能 JSON_TABLE示例详解

《MySQL8中的一个强大功能JSON_TABLE示例详解》JSON_TABLE是MySQL8中引入的一个强大功能,它允许用户将JSON数据转换为关系表格式,从而可以更方便地在SQL查询中处理J... 目录基本语法示例示例查询解释应用场景不适用场景1. ‌jsON 数据结构过于复杂或动态变化‌2. ‌性能要

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

MySQL 主从复制部署及验证(示例详解)

《MySQL主从复制部署及验证(示例详解)》本文介绍MySQL主从复制部署步骤及学校管理数据库创建脚本,包含表结构设计、示例数据插入和查询语句,用于验证主从同步功能,感兴趣的朋友一起看看吧... 目录mysql 主从复制部署指南部署步骤1.环境准备2. 主服务器配置3. 创建复制用户4. 获取主服务器状态5

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法