基于多尺度相关小波分解的单幅图像去雾和去噪方法(MATLAB)

2024-06-03 17:12

本文主要是介绍基于多尺度相关小波分解的单幅图像去雾和去噪方法(MATLAB),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

小波变换具有优美的数学背景和强大的多分辨率分析能力。它集成和发展了短时傅里叶变换的思想并克服了其时间窗口不可变的缺点。小波变换通过使用具有局部感受野和多尺度的基函数。形成了同时具有局部和全局性质的信号表征。与DCT等全局变换相比,小波变换可以防止局部高频信息扩散到整个变换域,因而处理信号中的局部非平滑特征时更加高效。然而,由于前文所述的原因。传统小波变换在处理具有复杂特征的自然图像时不够高效。为了解决这些问题,一些改良版本的小波变换被提出,这包括非自适应小波变换和自适应小波变换两种类型。

在非自适应小波变换领域,Ridgelet被提出用于描述图像中任意方向的直线特征。Ridgelet首先使用Randon变换,将线特征变换为Randon空间中的点特征,从而实现方向检测和方向选择,然后再使用1D的小波变换。与Ridgelet仍然处理直线特征相比.Curvelet则可以处理更加广泛的曲线特征。本质上Curvelet是分块形式的Ridgelet,然而重叠的块划分会导致产生冗余的小波系数(即小波系数数量多于原始的像素数),这降低了Curvelet应用于图像编码时的效率。Contourlet是一种2D小波变换,它先使用子带分解然后执行方向变换。然而,由于在子带分解中使用金字塔分解,Contourlet也会产生冗余的小波系数,因此也不适合用于图像编码。在自适应小波变换领域,大多数的工作都基于小波的提升结构实现。

鉴于此,采用多尺度相关小波分解方法对单幅图像进行去雾和去噪,运行环境为MATLAB R2018A。


function d = waveletdehaze(f,level, wname)
if (~exist('level','var'))level = 2;
end
if (~exist('wname','var'))wname = 'sym4';
endcoef = 2^level;[C,S] = wavedec2(f,level,wname);% estimate the noise standard deviation from the detail coefficients at level 1
if level~=0det1 = detcoef2('compact',C,S,1);tau = median(abs(det1))/0.6745;
endA = appcoef2(C,S,wname,level);
[imD,t]= dehaze(A/coef,level); % removal haze in low frequency
NA=  (imD(:)*coef)';for n = level:-1:1[CHD,CVD,CDD] = detcoef2('all',C,S,n);t = imresize(t,[size(CHD,1),size(CHD,2)],'bicubic');tD = cat(3,t,t,t);CHD = wthresh(CHD,'s',tau);              %Eqn(12)CVD = wthresh(CVD,'s',tau);              %Eqn(12)CDD = wthresh(CDD,'s',tau);              %Eqn(12)NCHD = bsxfun(@rdivide,CHD,t);           %Equ(16)NCVD = bsxfun(@rdivide,CVD,t);           %Equ(16)NCDD = bsxfun(@rdivide,CDD,t);           %Equ(16) NA = [NA NCHD(:)' NCVD(:)' NCDD(:)'];
endd = waverec2(NA,S,wname);
完整代码:https://mbd.pub/o/bread/mbd-ZJeXmpts
d(d>1) = 1;
d(d<0) = 0;

图片

图片

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于基于多尺度相关小波分解的单幅图像去雾和去噪方法(MATLAB)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027605

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自