动态规划之合唱队形问题(最长递增子序列变形)

2024-06-03 14:18

本文主要是介绍动态规划之合唱队形问题(最长递增子序列变形),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述 
N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学不交换位置就能排成合唱队形。

合唱队形定义:设K位同学从左到右依次编号为1, 2, …, K,他们的身高分别为T1, T2, …, TK,

则他们的身高满足T1 < T2 < … < Ti, Ti > Ti+1 > … > TK (1 <= i <= K)。 
要求:已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。

输入 
输入的第一行是一个整数N,表示同学的总数。 
第一行有n个整数,用空格分隔,第i个整数Ti是第i位同学的身高(厘米)。

输出 
输出包括一行,这一行只包含一个整数,就是最少需要几位同学出列。

解题思路 
定义n位同学的身高数组为a[n](注意这里数组长度不允许为变量,这里只是为了理解将n写如到[]中)。

总体思路】:假设第i(0<= i <= n - 1)个同学为最高点,分别求出此时i左边的最长递增子序列长度inc1[i],i右边的最长递减子序列长度inc2[i],由于最高点i同时包括在了inc1[i]和inc2[i]之中,因此实际的合唱队形的长度为inc1[i] + inc2[i] - 1。而我们求得的最后结果就是i从1到n - 1中,使得inc1[i] + inc2[i] - 1最大的情况。

具体实现】:现在设i为下标,循环i从0到n-1,求得各种i值对应的inc1[i];循环i从0到n-1,求得各种i值对应的inc2[i]。最后循环i从0到n-1,求得各种i值对应的inc[i] + inc2[i] - 1最大的情况ans,然后n - ans即为出列同学的人数。

当i = 0的时候,最高点0左边只有它自己,因此inc1[0] = 1;当i = n - 1的时候,最高点n - 1右边只有它自己,因此inc2[n - 1] = 1;当i处于0到n - 1之间时的求法也很好理解,在求inc1[i]时,j = (0 ~ i - 1)的inc[j]已经得出来了,所以我们只需要比较在前面的这些序列中加上a[i]时的最长递增序列,即在a[i]大于前面这些序列值的情况下inc[j] + 1最大的情况即为inc[i]。

源代码如下:

#include <iostream>
#include <stdio.h>
using namespace std;int inc1[200],inc2[200],a[200];
//inc1-->longest increase array from head to tail
//inc2-->longest increase array from tail to headint main()
{int n;while(scanf("%d",&n)!=EOF){int ans=0,i,j;for(i = 0; i < n; i++)  //输入n个人的身高scanf("%d",&a[i]);//inc1[i]是存储以i为最高点时左边的递增子序列长度inc1[0]=1;for(i = 1; i < n; i++){inc1[i] = 1;for(j = 0; j < i; j++)if(a[i] > a[j] && inc1[j] + 1 > inc1[i])inc1[i] = inc1[j]+1;}//inc2[i]是存储以i为最高点时左边的递减子序列长度inc2[n - 1] = 1;for(i = n - 2; i >= 0; i--){inc2[i] = 1;for(j = n - 1; j > i; j--)if(a[j] < a[i] && inc2[j] + 1 > inc2[i])inc2[i] = inc2[j] + 1;}for(i = 0; i<=n; i++)if(inc1[i] + inc2[i]-1 > ans) ans = inc1[i] + inc2[i] - 1;printf("%d\n",n-ans);}return 0;
}

这篇关于动态规划之合唱队形问题(最长递增子序列变形)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027219

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co