动态规划之合唱队形问题(最长递增子序列变形)

2024-06-03 14:18

本文主要是介绍动态规划之合唱队形问题(最长递增子序列变形),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述 
N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学不交换位置就能排成合唱队形。

合唱队形定义:设K位同学从左到右依次编号为1, 2, …, K,他们的身高分别为T1, T2, …, TK,

则他们的身高满足T1 < T2 < … < Ti, Ti > Ti+1 > … > TK (1 <= i <= K)。 
要求:已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。

输入 
输入的第一行是一个整数N,表示同学的总数。 
第一行有n个整数,用空格分隔,第i个整数Ti是第i位同学的身高(厘米)。

输出 
输出包括一行,这一行只包含一个整数,就是最少需要几位同学出列。

解题思路 
定义n位同学的身高数组为a[n](注意这里数组长度不允许为变量,这里只是为了理解将n写如到[]中)。

总体思路】:假设第i(0<= i <= n - 1)个同学为最高点,分别求出此时i左边的最长递增子序列长度inc1[i],i右边的最长递减子序列长度inc2[i],由于最高点i同时包括在了inc1[i]和inc2[i]之中,因此实际的合唱队形的长度为inc1[i] + inc2[i] - 1。而我们求得的最后结果就是i从1到n - 1中,使得inc1[i] + inc2[i] - 1最大的情况。

具体实现】:现在设i为下标,循环i从0到n-1,求得各种i值对应的inc1[i];循环i从0到n-1,求得各种i值对应的inc2[i]。最后循环i从0到n-1,求得各种i值对应的inc[i] + inc2[i] - 1最大的情况ans,然后n - ans即为出列同学的人数。

当i = 0的时候,最高点0左边只有它自己,因此inc1[0] = 1;当i = n - 1的时候,最高点n - 1右边只有它自己,因此inc2[n - 1] = 1;当i处于0到n - 1之间时的求法也很好理解,在求inc1[i]时,j = (0 ~ i - 1)的inc[j]已经得出来了,所以我们只需要比较在前面的这些序列中加上a[i]时的最长递增序列,即在a[i]大于前面这些序列值的情况下inc[j] + 1最大的情况即为inc[i]。

源代码如下:

#include <iostream>
#include <stdio.h>
using namespace std;int inc1[200],inc2[200],a[200];
//inc1-->longest increase array from head to tail
//inc2-->longest increase array from tail to headint main()
{int n;while(scanf("%d",&n)!=EOF){int ans=0,i,j;for(i = 0; i < n; i++)  //输入n个人的身高scanf("%d",&a[i]);//inc1[i]是存储以i为最高点时左边的递增子序列长度inc1[0]=1;for(i = 1; i < n; i++){inc1[i] = 1;for(j = 0; j < i; j++)if(a[i] > a[j] && inc1[j] + 1 > inc1[i])inc1[i] = inc1[j]+1;}//inc2[i]是存储以i为最高点时左边的递减子序列长度inc2[n - 1] = 1;for(i = n - 2; i >= 0; i--){inc2[i] = 1;for(j = n - 1; j > i; j--)if(a[j] < a[i] && inc2[j] + 1 > inc2[i])inc2[i] = inc2[j] + 1;}for(i = 0; i<=n; i++)if(inc1[i] + inc2[i]-1 > ans) ans = inc1[i] + inc2[i] - 1;printf("%d\n",n-ans);}return 0;
}

这篇关于动态规划之合唱队形问题(最长递增子序列变形)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027219

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图