从 AdaBoost 到随机森林:深入解析集成学习方法【集成学习】

2024-06-03 10:52

本文主要是介绍从 AdaBoost 到随机森林:深入解析集成学习方法【集成学习】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

集成学习的思想

集成学习是一种通过组合多个基学习器(弱学习器)来提高模型预测性能的机器学习方法。集成学习的思想类似于谚语“三个臭皮匠,顶个诸葛亮”,即通过集成多个表现较差的学习器,可以获得一个强大的整体模型。

什么是学习器?

  1. 强学习器:如神经网络等,通常具有较高的预测准确性,但需要大量的数据和计算资源来训练。
  2. 弱学习器:如逻辑回归等,个体性能较差,但计算代价低,容易训练。

集成学习的优点

  • 提高准确性:通过组合多个弱学习器,能显著提高模型的预测准确性。
  • 适应性强:适用于各种类型的数据和问题,应用范围广泛。

集成学习的核心问题

  1. 如何获得个体学习器

    • 个体学习器需要有所差异,这可以通过改变训练数据的 权值概率分布 来实现。例如,增大某类数据的权值,使其在训练中占据更重要的位置。
  2. 如何组合个体学习器

    • 最常见的组合方式是 线性相加 ,但也有其他方式,如投票法等。

Boosting 和 Bagging 的定义与机制

基于上述两个核心问题,Boosting和Bagging应运而生,它们分别采用不同的方法来解决这些问题。

Boosting

定义:Boosting意为“增强”,通过逐步调整弱学习器来提高模型的性能。

工作机制

  1. 获得个体学习器

    • Boosting按顺序(串行)训练多个弱学习器,每个学习器都试图修正前一个学习器的错误。
    • 每次训练后,样本的权重会根据前一个学习器的表现进行调整。错误分类的样本权重会增加,而正确分类的样本权重会减少。这样,后续的学习器会更加关注难以分类的样本。
  2. 组合个体学习器

    • 最终模型是多个弱学习器的加权组合(加法模型),这些学习器共同决定预测结果。

代表方法:AdaBoost、GBDT(梯度提升决策树)、XGBoost、LightGBM。

  1. AdaBoost:最经典的Boosting方法,通过不断调整样本权重,聚焦于被前一轮分类错误的样本。

    • 权重调整:初始时,每个样本的权重相同。每一轮训练后,错误分类的样本权重增加,正确分类的样本权重减少。
    • 组合策略:通过加权投票来决定最终分类结果。
  2. GBDT:利用梯度提升的思想,逐步减小预测误差,通过多个决策树的累加来逼近真实值。

    • 误差减少:每一轮训练基学习器时,GBDT会拟合前一轮的残差,即真实值与预测值之间的差距。
    • 组合策略:通过累加所有基学习器的预测结果来做最终预测。
  3. XGBoost:在GBDT的基础上进行了改进,提供了更高效的计算和更强的正则化功能。

    • 改进点:采用二阶导数信息、并行计算、正则化处理等,提升了训练速度和模型性能。
    • 组合策略:与GBDT类似,通过 累加 各基学习器的预测结果。
  4. LightGBM:优化了XGBoost的算法,能够处理更大规模的数据集,训练速度更快。

    • 特征分裂:采用基于直方图的决策树算法,减少了数据扫描次数,提升了训练速度。
    • 组合策略:与XGBoost相似,通过累加预测结果。

示例:以AdaBoost为例,它通过不断调整样本权重,聚焦于被前一轮分类错误的样本。每个学习器的输出通过加权投票来决定最终分类结果。

Bagging

定义:Bagging是“Bootstrap Aggregating”的缩写,通过并行训练多个弱学习器来提高模型的稳定性和准确性。

工作机制

  1. 获得个体学习器

    • Bagging从原始数据集中随机抽取多个子集(通常是有放回的抽样),每个子集用于训练一个独立的弱学习器。
  2. 组合个体学习器

    • 分类问题中通过投票决定最终结果,回归问题中通过计算平均值决定最终预测。

代表方法:随机森林(Random Forest)。

  1. 随机森林:Bagging的经典应用,通过随机抽样生成多个决策树,同时对特征进行随机选择,提高了模型的多样性和鲁棒性。
    • 抽样策略:采用放回抽样方法,从原始数据集中随机抽取子集,每个子集训练一个决策树。
    • 特征随机性:每个决策树在节点分裂时,随机选择部分特征进行最佳分裂,提高了模型的多样性。
    • 组合策略:分类问题通过多数 投票 决定最终结果,回归问题通过 取均值 得到最终预测。

示例:随机森林通过随机抽样生成多个决策树,同时对特征进行随机选择,提高了模型的多样性和鲁棒性。最终结果通过多数投票(分类)或取均值(回归)得出。

总结

集成学习方法通过组合多个基学习器,提高了模型的预测能力和鲁棒性。Boosting和Bagging作为集成学习的两种主要策略,通过不同的机制和策略来提升模型的性能。Boosting通过 串行训练 和加权调整样本权重,重点关注难分类的样本,而Bagging通过 并行训练 和随机抽样生成多样化的训练集,提升模型的稳定性和准确性。

这篇关于从 AdaBoost 到随机森林:深入解析集成学习方法【集成学习】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026780

相关文章

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)