自动微分技术在 AI for science 中的应用

2024-06-03 06:04

本文主要是介绍自动微分技术在 AI for science 中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文简记我在学习自动微分相关技术时遇到的知识点。

反向传播和自动微分

以 NN 为代表的深度学习技术展现出了强大的参数拟合能力,人们通过堆叠固定的 layer 就能轻松设计出满足要求的参数拟合器。

例如,大部分图神经网络均基于消息传递的架构。在推理阶段,用户只需给出分子坐标及原子类型,就能得到整个分子的性质。因此其整体架构与下图类似:

img

在模型设计阶段,我们用 pytorch 即可满足大部分需求,以 schnetpack 为例:

  1. 我们 from torch import nn 导入了设计 nn 常用的模块。在初始化模型时,我们直接继承了 pytorch 内置的模块 class AtomisticModel(nn.Module)
  2. 有一些函数是重新编写的,例如激活函数 shiftedsoftplus

我们可以看到,模型的整体框架依然是基于 pytorch 的,但针对具体的应用场景,我们做了很多优化。

一方面,使用 pytorch 可以帮助我们快速建立类似上图的模型网络,pytorch 会自动执行梯度的反向传播。从 loss function 开始,逐层递进直至输入层。pytorch 还会帮助我们完成整个网络的参数迭代,学习率的迭代等等。。。

另一方面,针对一些特殊的需求,用户需要自行 DIY,完成需要的功能。

这其中隐含着,用户在程序设计时灵活性与便利性之间的折中。

注意到,刚才提到了梯度的反向传播,事实上,这种常用算法只是自动微分算法中的一种。引用 Gemini 的一个例子:

  • 反向传播好像是计算小山丘斜率(仅限于 NN)的一种算法;
  • 自动微分则可以计算除了小山丘以外的所有物品的斜率(涵盖所有链式求导法则);

写到这里,自动微分技术的应用场景就很好理解了:

  • 有一些应用场景不适合无脑堆叠 NN,但仍然需要优化参数,此时 from torch import nn 就不管用了,套用固定模版已经很难带来便利性;
  • 由于整个网络的框架已经不再是上图所示,规整的一层层的 NN 结构,反向传播算法就不再适用于参数优化了,需要更加灵活的自动微分方法;

pytorch 与 jax

我们可以将参数优化的相关框架归结为两个应用场景:

  1. 用户调用标准函数,搭建层级式标准 NN;
  2. 用户自行设计函数,搭建非标准拟合器(仍需优化参数)

针对第一个场景,我们可以使用 pytorch,因为 pytorch 对常用网络架构封装很好。

针对第二个场景,使用 pytorch 会更加繁琐,此时可以切换为 jax ,因为 jax 对用户自定义函数形式更加友好,其内置自动微分算法使用起来更加方便。

除了应用场景的区别外,二者还有以下几个区别:

  1. pytorch 支持静态/动态计算图,而 jax 仅支持静态图
  2. pytorch debug 起来更加方便
  3. jax 针对 GPU, TPU 等硬件优化更多,结合其 JIT(Just In Time) 特性,jax 模型一般比 pytorch 模型快得多
  4. 二者间的相互转换难度不大(参见:一文打通PyTorch与JAX)

AI for Science 领域内三个应用案例

DMFF

余旷老师在他的系列博文里系统阐释了为什么 DMFF 要基于 jax 开发(参见:漫谈分子力场、自动微分与DMFF项目:4. DMFF和JAX概述)

总结一下,使用 jax 的原因有以下几点:

  1. 传统分子力场的形式不适合用 NN 建模
    • 为方便大家理解,我举一个中学物理的例子。苹果从树上落下,遵从自由落体运动,位移随时间变化的规律:h=1/2 * g * t^2, 其中 g 作为引力常数就是需要通过多次落体实验测定的量。我们当然可以用多层 NN 拟合这一参数,但假如我们已经知道了这样一个表达式,此时直接使用该表达式即可。
    • 传统分子力场就是高度参数化的方程,发展至今已经有了一套函数形式,无需从头用 NN 的形式拟合
  2. 反向传播算法只适用与 NN,不适应上述高度参数化的方程,但优化力场参数仍需要自动微分技术
    • 计算原子受力,整个盒子的维里均需要微分技术,使用 jax 编程会更加方便
  3. jax 性能更高,速度快
  4. jax 可拓展性好
    • 余旷老师在 漫谈分子力场、自动微分与DMFF项目:5. DMFF中势函数的生成和拓展 举了一个例子,使用 DMFF 能有效复用前人开发势函数模块,无需从头造轮子

E3x

在 Oliver T. Unke 近期的一篇论文中,作者介绍了名为 E3x 的神经网络框架,对标 pytorch_geometric。

其目的在于,方便用户设计具有 E3 等变性的图神经网络。

使用 E3x 能将所有 AI for Science 领域的 GNN 从 pytorch 迁移至 jax 框架,再结合 jax-MD,获得大幅性能提升。

作者在另一篇论文中透露了这种改造的效果:

请添加图片描述

在稳定性和受力误差不变的情况下,NequIP 提速 28 倍,SchNet 提速 15 倍。那么,E3x 做了哪些关键改动呢?

  1. e3x 对不可约张量进行了压缩,降低了其稀疏性

    请添加图片描述

  2. e3x 设计了开箱即用的激活函数,全连接层、张量层等,这些网络结构都是 E3 等变的

DLDFPT

神经网络与密度泛函围绕理论的结合,论文地址

这是李贺大神今年上半年的一篇 PRL,说实话,我也没看懂。我只是理解到:

  • 传统的 DFPT 理论在计算某一个矩阵的时候遇到了计算瓶颈;
  • 使用自动微分技术能绕开这一瓶颈

这篇关于自动微分技术在 AI for science 中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026176

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到