回炉重造java----JUC(第一天)

2024-06-03 04:44
文章标签 java 第一天 juc 回炉 重造

本文主要是介绍回炉重造java----JUC(第一天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • JUC前置知识
  • ①进程和线程的区别?
  • ②并行和并发的区别?
  • ③异步调用和同步调用的区别?
  • ④创建线程的方法
  • ⑤线程的上下文切换
  • ⑥TimeUtil
  • ⑦Interrupt
  • ⑧如何在一个线程中终止另外一个线程?
  • ⑨线程的状态
  • 共享模型之管程
  •  阻塞式:Synchronized
  • 线程八锁问题
  • 变量的线程安全分析 
  • 常见的线程安全类
  • Monitor

JUC前置知识


①进程和线程的区别?

①其根本区别在于进程是操作系统资源分配的基本单位,而线程是CP任务调度和执行的基本单位。

②一个进程可以有多个线程,至少有一个,而一个线程只能属于一个进程。

③同一个线程里的进程共享资源,而进程之间的资源是相互独立的。

④开销方面,创建,切换或者销毁一个进程的开销明显大于线程的创建,切换和开销。

⑤通信方面,进程间通信相对复杂,一般是要通过网络进行通信,而线程之间因为是共享线程的资源,所以通信相对简单。

②并行和并发的区别?

①并发:当有多个线程在执行时,但是如果系统是单核CPU系统时,CPU在同一时刻只能执行一个线程,也叫作串行执行,但是CPU会通过时间片的方式进行线程之间的切换执行,一般把这种线程轮流使用CPU的方式叫做并发。

②并行:上面讲的是系统在单核CPU下的情况,但是如果系统是多核CPU时,在同一时刻会有多个线程被执行,线程之间互不干扰,这就叫做并行。

③异步调用和同步调用的区别?

        ①同步通常指的是事件、操作或进程之间的有序关系。在一个同步场景中,一个操作必须在另一个操作完成后才能开始执行。同步还可以指代多个线程或进程在执行过程中需要进行协调,例如通过锁、信号量等机制来确保数据一致性或避免竞争条件。

         ②异步描述的是事件、操作或进程之间相互独立的关系。在异步场景中,一个操作可以在不等待其他操作完成的情况下开始执行。异步操作使得多个任务可以独立进行,从而提高系统的并发性能和响应能力。

④创建线程的方法

        ①继承Thread类,重写Run方法

        ②实现Runnable接口,重写Run方法

        ③实现Callable接口,重写call方法

        ④线程池

⑤线程的上下文切换

注:sleep不释放锁,但是会让出CPU

⑥TimeUtil

public enum TimeUnit {/*** Time unit representing one thousandth of a microsecond*/NANOSECONDS {public long toNanos(long d)   { return d; }public long toMicros(long d)  { return d/(C1/C0); }public long toMillis(long d)  { return d/(C2/C0); }public long toSeconds(long d) { return d/(C3/C0); }public long toMinutes(long d) { return d/(C4/C0); }public long toHours(long d)   { return d/(C5/C0); }public long toDays(long d)    { return d/(C6/C0); }public long convert(long d, TimeUnit u) { return u.toNanos(d); }int excessNanos(long d, long m) { return (int)(d - (m*C2)); }},/*** Time unit representing one thousandth of a millisecond*/MICROSECONDS {public long toNanos(long d)   { return x(d, C1/C0, MAX/(C1/C0)); }public long toMicros(long d)  { return d; }public long toMillis(long d)  { return d/(C2/C1); }public long toSeconds(long d) { return d/(C3/C1); }public long toMinutes(long d) { return d/(C4/C1); }public long toHours(long d)   { return d/(C5/C1); }public long toDays(long d)    { return d/(C6/C1); }public long convert(long d, TimeUnit u) { return u.toMicros(d); }int excessNanos(long d, long m) { return (int)((d*C1) - (m*C2)); }},/*** Time unit representing one thousandth of a second*/MILLISECONDS {public long toNanos(long d)   { return x(d, C2/C0, MAX/(C2/C0)); }public long toMicros(long d)  { return x(d, C2/C1, MAX/(C2/C1)); }public long toMillis(long d)  { return d; }public long toSeconds(long d) { return d/(C3/C2); }public long toMinutes(long d) { return d/(C4/C2); }public long toHours(long d)   { return d/(C5/C2); }public long toDays(long d)    { return d/(C6/C2); }public long convert(long d, TimeUnit u) { return u.toMillis(d); }int excessNanos(long d, long m) { return 0; }},/*** Time unit representing one second*/SECONDS {public long toNanos(long d)   { return x(d, C3/C0, MAX/(C3/C0)); }public long toMicros(long d)  { return x(d, C3/C1, MAX/(C3/C1)); }public long toMillis(long d)  { return x(d, C3/C2, MAX/(C3/C2)); }public long toSeconds(long d) { return d; }public long toMinutes(long d) { return d/(C4/C3); }public long toHours(long d)   { return d/(C5/C3); }public long toDays(long d)    { return d/(C6/C3); }public long convert(long d, TimeUnit u) { return u.toSeconds(d); }int excessNanos(long d, long m) { return 0; }},/*** Time unit representing sixty seconds*/MINUTES {public long toNanos(long d)   { return x(d, C4/C0, MAX/(C4/C0)); }public long toMicros(long d)  { return x(d, C4/C1, MAX/(C4/C1)); }public long toMillis(long d)  { return x(d, C4/C2, MAX/(C4/C2)); }public long toSeconds(long d) { return x(d, C4/C3, MAX/(C4/C3)); }public long toMinutes(long d) { return d; }public long toHours(long d)   { return d/(C5/C4); }public long toDays(long d)    { return d/(C6/C4); }public long convert(long d, TimeUnit u) { return u.toMinutes(d); }int excessNanos(long d, long m) { return 0; }},/*** Time unit representing sixty minutes*/HOURS {public long toNanos(long d)   { return x(d, C5/C0, MAX/(C5/C0)); }public long toMicros(long d)  { return x(d, C5/C1, MAX/(C5/C1)); }public long toMillis(long d)  { return x(d, C5/C2, MAX/(C5/C2)); }public long toSeconds(long d) { return x(d, C5/C3, MAX/(C5/C3)); }public long toMinutes(long d) { return x(d, C5/C4, MAX/(C5/C4)); }public long toHours(long d)   { return d; }public long toDays(long d)    { return d/(C6/C5); }public long convert(long d, TimeUnit u) { return u.toHours(d); }int excessNanos(long d, long m) { return 0; }},/*** Time unit representing twenty four hours*/DAYS {public long toNanos(long d)   { return x(d, C6/C0, MAX/(C6/C0)); }public long toMicros(long d)  { return x(d, C6/C1, MAX/(C6/C1)); }public long toMillis(long d)  { return x(d, C6/C2, MAX/(C6/C2)); }public long toSeconds(long d) { return x(d, C6/C3, MAX/(C6/C3)); }public long toMinutes(long d) { return x(d, C6/C4, MAX/(C6/C4)); }public long toHours(long d)   { return x(d, C6/C5, MAX/(C6/C5)); }public long toDays(long d)    { return d; }public long convert(long d, TimeUnit u) { return u.toDays(d); }int excessNanos(long d, long m) { return 0; }};

Thread中sleep的技巧:

        Thread.sleep(500);//默认是毫秒TimeUnit.MILLISECONDS.sleep(500);

sleep的技巧:

⑦Interrupt

         如果是打断sleep或者wait或者join的线程,Isinterrupt()返回的结果依旧是FALSE,但是会通过抛出异常的方式回应。

        如果是打断正在运行的进程,Isinterrupt()返回的结果就是TRUE。但是只是设置这个标记,不会真正的直接停掉线程。

⑧如何在一个线程中终止另外一个线程?

 

⑨线程的状态

        ①New:新建状态。

        ②Runnable:可运行状态(其包含了可运行,正在运行和IO阻塞)。

        ③Blocked:阻塞状态(像拿不到锁阻塞等待)。

        ④Waiting:等待状态,一般要使用notify或者notifyAll方法唤醒。

        ⑤Timed_Waiting:超时等待状态。

        ⑥Terminated:终止状态。所以当你第二次调用start方法的时候就会报错。

共享模型之管程

并发:原子性,可见性和有序性

 阻塞式:Synchronized

实际上是使用对象锁保证了临界区内代码的原子性。 

public class syntest {private static Object object = new Object();private static int num=0;public static void main(String[] args) throws InterruptedException {//创建一个线程Thread t1 = new Thread(() -> {for (int i = 0; i < 10; i++) {synchronized (object){System.out.println("线程一获得了锁");num++;}}}, "t1");//创建一个线程Thread t2 = new Thread(() -> {for (int i = 0; i < 10; i++) {synchronized (object){System.out.println("线程二获得了锁");num--;}}}, "t2");t1.start();t2.start();t1.join();t2.join();System.out.println(num);}
}

synchronize可以锁对象,也可以锁成员方法(锁的是this对象),还可以锁静态方法(锁的是该类)

线程八锁问题

情况一:锁对象 

情况二:sleep不释放锁

 情况三:添加一个无锁的普通方法,并行执行普通方法

情况四:成员方法上锁的是this对象

情况五:静态方法上锁的是class,与锁this对象时两个不同的对象,不会互斥

情况六:静态方法上锁的是class

情况七:静态方法上锁的是class,与锁this对象时两个不同的对象,不会互斥

 情况八:锁的都是class类对象

变量的线程安全分析 

①成员变量和静态变量都是线程不安全的

②局部变量是线程安全。但是如果局部变量有引用的话而且暴露给了外部(即创建的子类中创建一个线程去操作引用),就是不安全的。

常见的线程安全类

①String,被final修饰,并且为不可变类

②包装类Integer,Boolean,Dobue.....,也是被final修饰,并且为不可变类

③StringBuffer,也是被final修饰

④集合中的vector和hashtable

⑤java.util.concurrent包下的类

这篇关于回炉重造java----JUC(第一天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026039

相关文章

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick