Seurat | 不同单细胞转录组的整合方法

2024-06-02 23:08

本文主要是介绍Seurat | 不同单细胞转录组的整合方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、涉及的新概念

mark

参考(reference):将跨个体,跨技术,跨模式产生的不同的单细胞数据整合后的数据集 。也就是将不同来源的数据集组合到同一空间(reference)中。 从广义上讲,在概念上类似于基因组DNA序列的参考装配。

查询(query):单个实验产生的数据集

转化学习(transfer learning):产生一个于参考数据集(reference)上进行训练的模型,可以将信息再重新投影到query datase上

锚定:由一组共同的分子特征定义的两个细胞(每个数据集一个),将对应关系表示锚定。将得到的一对细胞为锚点,它们编码的跨数据集的细胞关系,将构成所有后续整合分析的基础。

二、标准流程
安装数据集
library(Seurat)
library(SeuratData)
InstallData("panc8")

这里如果长时间下载不了,尝试以下的方法:

  • 可以在Rstudio的控制台看到下载链接,将它复制到本地下载:https://seurat.nygenome.org/src/contrib/panc8.SeuratData_3.0.2.tar.gz

    mark

  • 待下载完成,解压,将标注文件复制出来

    mark

  • 复制到R环境的库目录,比如我的是:E:\R\R-3.6.1\library\SeuratData\data

数据预处理
rm(list = ls())
options(stringsAsFactors = F)
library(Seurat)
library(SeuratData)
data("panc8")
pancreas.list <- SplitObject(panc8, split.by = "tech")
pancreas.list <- pancreas.list[c("celseq", "celseq2", "fluidigmc1", "smartseq2")]# 先对数据集进行归一化,并为每个识别位点确定可变特征。
# 特征选择方法使用variance stabilizing transformation ("vst")
for (i in 1:length(pancreas.list)) {pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE)pancreas.list[[i]] <- FindVariableFeatures(pancreas.list[[i]], selection.method = "vst", nfeatures = 2000, verbose = FALSE)
}
整合数据集
# 整合3种测序方法的胰岛细胞数据集
reference.list <- pancreas.list[c("celseq", "celseq2", "smartseq2")]
# 识别锚点
# 这里选的维度是30,作者建议可以在10-50间调试
pancreas.anchors <- FindIntegrationAnchors(object.list = reference.list, dims = 1:30)
# 进行数据集整合
# 已经整合后的表达矩阵存储在Assay中,未处理的表达举证在RNA对象中
pancreas.integrated <- IntegrateData(anchorset = pancreas.anchors, dims = 1:30)
可视化
library(ggplot2)
library(cowplot)
DefaultAssay(pancreas.integrated) <- "integrated"
pancreas.integrated <- ScaleData(pancreas.integrated, verbose = FALSE)
pancreas.integrated <- RunPCA(pancreas.integrated, npcs = 30, verbose = FALSE)
pancreas.integrated <- RunUMAP(pancreas.integrated, reduction = "pca", dims = 1:30)
p1 <- DimPlot(pancreas.integrated, reduction = "umap", group.by = "tech")
p2 <- DimPlot(pancreas.integrated, reduction = "umap", group.by = "celltype", label = TRUE, repel = TRUE) + NoLegend()
plot_grid(p1, p2)

mark

使用装配参考数据集进行细胞类型分类

mark

三、SCTransform 流程
rm(list = ls())
options(stringsAsFactors = F)
library(Seurat)
library(ggplot2)
options(future.globals.maxSize = 4000 * 1024^2)
data("panc8")
数据预处理
pancreas.list <- SplitObject(panc8, split.by = "tech")
pancreas.list <- pancreas.list[c("celseq", "celseq2", "fluidigmc1", "smartseq2")]# 对每个项目运行SCTransform
for (i in 1:length(pancreas.list)) {pancreas.list[[i]] <- SCTransform(pancreas.list[[i]], verbose = FALSE)
}# 接下来,为下游分析选择特征,运行 PrepSCTIntegration, 确保已计算出所有必要的Pearson
pancreas.features <- SelectIntegrationFeatures(object.list = pancreas.list, nfeatures = 3000)
pancreas.list <- PrepSCTIntegration(object.list = pancreas.list, anchor.features = pancreas.features, verbose = FALSE)
整合数据集
# 这里选择归一化方法为“SCT”,其他命令与标准化流程一样
pancreas.anchors <- FindIntegrationAnchors(object.list = pancreas.list, normalization.method = "SCT", anchor.features = pancreas.features, verbose = FALSE)
pancreas.integrated <- IntegrateData(anchorset = pancreas.anchors, normalization.method = "SCT", verbose = FALSE)
细胞分群
pancreas.integrated <- RunPCA(pancreas.integrated, verbose = FALSE)
pancreas.integrated <- RunUMAP(pancreas.integrated, dims = 1:30)
plots <- DimPlot(pancreas.integrated, group.by = c("tech", "celltype"), combine = FALSE)
plots <- lapply(X = plots, FUN = function(x) x + theme(legend.position = "top") + guides(color = guide_legend(nrow = 3, byrow = TRUE, override.aes = list(size = 3))))
CombinePlots(plots)

mark

四、使用另一个数据集来验证该流程
安装数据集
InstallData("pbmcsca")
数据预处理
data("pbmcsca")
pbmc.list <- SplitObject(pbmcsca, split.by = "Method")
for (i in names(pbmc.list)) {pbmc.list[[i]] <- SCTransform(pbmc.list[[i]], verbose = FALSE)
}
pbmc.features <- SelectIntegrationFeatures(object.list = pbmc.list, nfeatures = 3000)
pbmc.list <- PrepSCTIntegration(object.list = pbmc.list, anchor.features = pbmc.features)
pbmc.anchors <- FindIntegrationAnchors(object.list = pbmc.list, normalization.method = "SCT", anchor.features = pbmc.features)
pbmc.integrated <- IntegrateData(anchorset = pbmc.anchors, normalization.method = "SCT")pbmc.integrated <- RunPCA(object = pbmc.integrated, verbose = FALSE)
pbmc.integrated <- RunUMAP(object = pbmc.integrated, dims = 1:30)
plots <- DimPlot(pbmc.integrated, group.by = c("Method", "CellType"), combine = FALSE)
plots <- lapply(X = plots, FUN = function(x) x + theme(legend.position = "top") + guides(color = guide_legend(nrow = 4, byrow = TRUE, override.aes = list(size = 2.5))))
CombinePlots(plots)

mark

这篇关于Seurat | 不同单细胞转录组的整合方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025346

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

SpringBoot整合OpenFeign的完整指南

《SpringBoot整合OpenFeign的完整指南》OpenFeign是由Netflix开发的一个声明式Web服务客户端,它使得编写HTTP客户端变得更加简单,本文为大家介绍了SpringBoot... 目录什么是OpenFeign环境准备创建 Spring Boot 项目添加依赖启用 OpenFeig

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊