从零开始学统计 04 | 协方差与相关性分析

2024-06-02 22:58

本文主要是介绍从零开始学统计 04 | 协方差与相关性分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、老板的任务

老板今天又给一个任务:

计算肝脏细胞中 X 基因与 Y 基因的关系。

现在,两个基因在各个细胞中的表达值都有了。

绘制不同细胞中 X,Y 基因的表达值在坐标轴上。

计算 X 基因和 Y 基因在5个细胞中的均值,标准差。

mark

因为这些测量值都是来自同一个细胞,所以我们可以成对来看:

mark

那么这样成对的测量可以告诉我们哪些信息呢?

现在,先将一对细胞连接,绘制一个点

mark

绘制完成,我们发现,X 基因相对较低的细胞对应的 Y 基因的值也较低,两个基因出现步调一致的表达情况,这可以用一条线来表示:

mark

不难看到,这条线是正斜率,代表着细胞中的 X 基因表达高,Y基因同样会表达高,同样表达低也会出现相同的情况。说明两基因具有正趋势关系

来看一个相反的情况:

mark

上图中的线为负斜率,告诉我们细胞中的 X 基因表达高,Y基因会表达低,出现相反的表达情况。说明两基因具有负趋势关系

第三种情况是,一个基因相对另一个基因,并没有显著变化。说明两基因无趋势关系

mark

mark

我们现在总结出 X 基因相对 Y 基因的关系有以上三种情况:

  • 正趋势关系
  • 负趋势关系
  • 无趋势关系

二、协方差

为了去说明 X 基因相对 Y 基因的趋势关系,我们需要一个数学上的解释:

首先计算 X基因与 Y 基因的均值

mark

现在计算一个点的与两基因均值的差值:

mark

将值代入mark计算:(3-17.6)x(12-24.4)= -14.6 x -12.4 = 181

如果将五个点都计算一遍,得到:

mark

现在可以计算**协方差(Covariance)**了:

mark

会发现:

mark

这些点所在象限,最终的值都为正值,也就是说这五个点对总协方差的贡献都是正值。

协方差值为正,斜率为正,这告诉我们当协方差为正时,就可以将二者的关系分类为正趋势。如果协方差为负,则相反。

协方差的优缺点

但是,协方差值并不能告诉我们表示关系的直线的斜率是陡峭还是平缓,而且也不能反应点距离线是远还是近。协方差唯一能告诉我们的是关系的斜率为正还是负。

但是协方差还有一个很大的缺点,我们接下来讨论:

比如现在同样计算两个基因的协方差,我们将左边的数据范围扩大一倍,也就是从40 -> 80。

接下来,我们继续计算同样的两个基因的协方差,虽然线相对位置没发生变化,但是会发现协方差会扩大4倍。

mark

就很有意思,我们唯一改变的只是数据点的值范围,数据点的关系并没有变化,但是协方差依旧在改变。

也就是说,协方差对于数据范围更敏感,而不是数据关系,这就使得它很难用于关系的描述,比如是否接近表示关系的虚线,以及和虚线间的距离。

虽然这样,但是协方差并不是一无是处,相反它是各种分析的基础,比如主成分分析,相关性分析。

三、相关性分析

1. 相关性强弱

基于趋势线,我们可以根据某个 Y 基因值,预测 X 基因的值。

当然,也可以用 X 基因来预测 Y 基因,就行下图这样的:

mark

如果该数据越接近趋势线,根据 X 基因值去预测 Y 基因值就会落在较小范围内,那么 X 基因就会告诉我们更详细的 Y 基因信息。也可以说, X 基因对 Y 基因的关系相对较强。

相反,距离趋势线较远,我们会猜测 Y 基因值会落在更大的范围内:

mark

这就代表 X 基因和 Y 基因间的关系相对较弱。

但是这里要注意描述问题,以上是用 X 基因根据趋势线和数值去预测 Y 基因的值。而不是代表着 X 基因值会导致 Y 基因值的变化。

我们现在得到可以量化关系强度的分类:

  • 弱相关,较小的相关值
  • 强相关,较大的相关值

mark

2. P值

假设一个极端情况,所有点可以被正斜率的直线通过,这时的相关性为 1

mark

无论数据关联的大小如何,只要具有正斜率的直线可以遍历所有数据,和斜率无关,相关性都为1

mark

还有这样的,相关性也是为1

mark

现在考虑个问题,如果数据集中只有两个值,就像下面这样:

mark

类似这样的,其实并不能作为趋势线,因为两点绘制为线,这个随机性太大。也就是数据量太小的话,并不能代表数据总体。

测得的数据量越多,得到趋势线后,我们对于预测到正确的值越有信心,这时的P值越小。

mark

上图中,对于第三个数据量多,P值很小,我们最有信心得出正确的预测值。

相关性代表了二者的关系,上图中的相关性很差,即使增加再多的样本量,也不会改变二者的关系。虽然增加了我们对预测的信心,可信度增加了,但是得到的结果是二者的关系依然很糟。

3. 总结

趋势线为负时,相关性相反

趋势线为正时,相关性为正

mark

但是,我们大多数情况遇到的是数据分布在趋势线的两侧,

mark

相关性值越接近 0 时,在拟合时,效果就会越差。

mark

当相关性值为 0 时,就没有关系了。

mark

现在可以看看相关性的公式了:

mark

  • 分子是二者的协方差,用来确定斜率的正负
  • 分母是标准差,使相关性质取值范围为-1到1。而且可以确保数据规模不影响相关性值
4. R平方

绘制小鼠编号和小鼠体重的散点图,计算点与体重均值的距离,计算方差:

mark

小鼠体重与小鼠体型的散点图,同样绘制点与均值的距离,计算方差:

mark

可以发现,虽然点在 X 轴方向的排列顺序变了,但是方差并不会改变。

我们所要做的就是根据数据拟合一条直线,可以绘制出这根蓝线:

mark

看起来拟合直线(蓝线)比均值直线(黑线)更好地贴合数据。

mark

  • Var(mean):数据值与其平均值的差的平方和,用来衡量数据点离均值线的远近
  • Var(line):数据值与蓝线的差的平方和,用来衡量数据点离拟合线的远近

最终 R^2 的范围是 0 到 1,因为拟合直线附近的变化,永远不会大于,以平均线为基准衡量附近的变化。

mark

最后,获得 R^2 = 81%,代表着蓝线与数据点的差值平方和比均值的对应数值小81%。也就是说,小鼠的大小与重量的相关性能够解释总差异的 81%,大部分数据变化都可以有小鼠体重和体型大小的关系来解释。

假设研究小鼠体重和嗅探石头的花费时间的关系:

mark

可以看到拟合出的直线也是一个很大的值,计算得到的 R^2 只有 6%,代表这条拟合线只比平均值多解释了6%的差异,也就是说,X与 Y 二者的相关性仅仅能解释总差异的 6%,意味着数据中几乎没有任何差异可以用 X 变量来解释。

R^2 可以更好的直观解释数据的相关性,比如:

R^2 = 0.7^2 = 0.5,50%的差异可以用变量相关性来解释

R^2 = 0.5^2 = 0.25,25%的差异可以用变量相关性来解释

但是,R^2并没有方向,这时候需要结合R,描述这两个变量是正相关或负相关的。

R平方是两个变量间相关性能够解释总体差异的百分比

如果有相关系数 R 时,需要计算 R 平方。

致谢:

https://www.youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw

这篇关于从零开始学统计 04 | 协方差与相关性分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025326

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致