强化学习实践一:Tic-Tac-Toe游戏

2024-06-02 20:58

本文主要是介绍强化学习实践一:Tic-Tac-Toe游戏,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里给出一个简单的强化学习例子Tic-Tac-Toe。这是一个简单的游戏,在一个3x3的九宫格里,两个人轮流下,直到有个人的棋子满足三个一横一竖或者一斜,赢得比赛游戏结束,或者九宫格填满也没有人赢,则和棋。

这个例子的完整代码在我的github。例子只有一个文件,很简单,代码首先会用两个电脑选手训练模型,然后可以让人和机器对战。当然,由于这个模型很简单,所以只要你不乱走,最后的结果都是和棋,当然想赢电脑也不是不可能的。

我们重点看看这个例子的模型,理解上面第二节的部分。如何训练强化学习模型可以先不管。代码部分大家可以自己去看,只有300多行。

首先看第一个要素环境的状态S。这是一个九宫格,每个格子有三种状态,即没有棋子(取值0),有第一个选手的棋子(取值1),有第二个选手的棋子(取值-1)。那么这个模型的状态一共有3^{9}=19683个。

接着我们看个体的动作A,这里只有9个格子,每次也只能下一步,所以最多只有9个动作选项。实际上由于已经有棋子的格子是不能再下的,所以动作选项会更少。实际可以选择动作的就是那些取值为0的格子。

第三个是环境的奖励R,这个一般是我们自己设计。由于我们的目的是赢棋,所以如果某个动作导致的改变到的状态可以使我们赢棋,结束游戏,那么奖励最高,反之则奖励最低。其余的双方下棋动作都有奖励,但奖励较少。特别的,对于先下的棋手,不会导致结束的动作奖励要比后下的棋手少。

# give reward to two players
def giveReward(self):if self.currentState.winner == self.p1Symbol:self.p1.feedReward(1)self.p2.feedReward(0)elif self.currentState.winner == self.p2Symbol:self.p1.feedReward(0)self.p2.feedReward(1)else:self.p1.feedReward(0.1)self.p2.feedReward(0.5)

第四个是个体的策略(policy)π,这个一般是学习得到的,我们会在每轮以较大的概率选择当前价值最高的动作,同时以较小的概率去探索新动作,在这里AI的策略如下面代码所示。

里面的exploreRate就是我们的第八个要素探索率ϵ。即策略是以1−ϵ的概率选择当前最大价值的动作,以ϵ的概率随机选择新动作。

# determine next action
def takeAction(self):state = self.states[-1]nextStates = []nextPositions = []for i in range(BOARD_ROWS):for j in range(BOARD_COLS):if state.data[i, j] == 0:nextPositions.append([i, j])nextStates.append(state.nextState(i, j, self.symbol).getHash())if np.random.binomial(1, self.exploreRate):np.random.shuffle(nextPositions)# Not sure if truncating is the best way to deal with exploratory step# Maybe it's better to only skip this step rather than forget all the historyself.states = []action = nextPositions[0]action.append(self.symbol)return actionvalues = []for hash, pos in zip(nextStates, nextPositions):values.append((self.estimations[hash], pos))np.random.shuffle(values)values.sort(key=lambda x: x[0], reverse=True)action = values[0][1]action.append(self.symbol)return action

第五个是价值函数,代码里用value表示。价值函数的更新代码里只考虑了当前动作的现有价值和得到的奖励两部分,可以认为我们的第六个模型要素衰减因子γ为0。具体的代码部分如下,价值更新部分的代码加粗。具体为什么会这样更新价值函数我们以后会讲。

# update estimation according to reward
def feedReward(self, reward):if len(self.states) == 0:returnself.states = [state.getHash() for state in self.states]target = rewardfor latestState in reversed(self.states):value = self.estimations[latestState] + self.stepSize * (target-self.estimations[latestState])self.estimations[latestState] = valuetarget = valueself.states = []

第七个是环境的状态转化模型, 这里由于每一个动作后,环境的下一个模型状态是确定的,也就是九宫格的每个格子是否有某个选手的棋子是确定的,因此转化的概率都是1,不存在某个动作后会以一定的概率到某几个新状态,比较简单。

以上就是强化学习的模型基础,从这个例子,相信大家对于强化学习的建模会有一个初步的认识了。

 

本文转自:https://www.cnblogs.com/pinard/p/9385570.html

 

 

这篇关于强化学习实践一:Tic-Tac-Toe游戏的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025069

相关文章

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的