python中利用cartopy库绘制SST图像

2024-06-02 17:28
文章标签 python 图像 绘制 cartopy sst

本文主要是介绍python中利用cartopy库绘制SST图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. Cartopy简介

Cartopy 是一个开源的 Python 库,用于绘制地图和地理数据分析。它结合了 matplotlib 的绘图功能和 shapely、pyproj 等库的地理空间数据处理能力,为用户提供了在地图上可视化数据的强大工具。

以下是 Cartopy 的一些主要特点和功能:
【1】支持常用地图投影:Cartopy 支持多种常用地图投影,包括 Mercator、Lambert Conformal、Orthographic 等,以及全球和局部的投影。
【2】地图特征:Cartopy 内置了一些常见的地图特征数据,如海岸线、河流、湖泊等,方便用户在地图上添加这些特征。
【3】地理数据处理:Cartopy 可以轻松处理地理空间数据,如矢量数据、栅格数据等,支持常见的地理空间文件格式。
【4】与 Matplotlib 结合:作为 Matplotlib 的扩展库,Cartopy 可以直接与 Matplotlib 结合使用,使用户可以在 Matplotlib 的图形基础上添加地图数据。
【5】开源和活跃的社区:Cartopy 是一个开源项目,拥有活跃的社区支持,用户可以从社区获取支持和贡献自己的代码。

Cartopy 在科学研究、地理信息系统、气象学等领域都有广泛的应用,可以用于绘制地图、分析地理数据、制作气象图等。它提供了丰富的功能和灵活的接口,适用于多种地理空间应用场景。

2. 绘制SST数据

下面使用随机生产的SST绘图

2.1 Lambert投影

在这里插入图片描述

2.2 Mercator投影

在这里插入图片描述

3. 代码

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import numpy as np# 生成经纬度网格
lon_min=100
lon_max=140
lat_min=0
lat_max=30lon = np.arange(lon_min, lon_max+0.5, 0.5)
lat = np.arange(lat_min, lat_max+0.5, 0.5)
lon_grid, lat_grid = np.meshgrid(lon, lat)# 生成随机噪声
noise = np.random.rand(len(lat), len(lon)) * 2 - 1  # 随机噪声范围为[-1, 1]# 生成正弦函数并添加噪声
sst = np.sin(lon_grid * np.pi / 180) + np.cos(lat_grid * np.pi / 180) + 0.2*noise
sst_max=np.max(sst)
sst_min=np.min(sst)
sst=(sst-sst_min)/(sst_max-sst_min)*30# 创建图形
fig = plt.figure(figsize=(10, 8))# 使用Lambert投影
ax = plt.axes(projection=ccrs.LambertConformal(central_longitude=120, central_latitude=15))# 使用Mercator投影
# ax = plt.axes(projection=ccrs.Mercator())# 设置地图范围
ax.set_extent([lon_min, lon_max, lat_min, lat_max], crs=ccrs.PlateCarree())# 绘制SST数据contour = ax.contourf(lon_grid, lat_grid, sst, transform=ccrs.PlateCarree(), cmap='coolwarm',levels=np.linspace(5, 25, 21),extend='both')
cbar = plt.colorbar(contour, orientation='horizontal',pad=0.05,aspect=40,ticks=np.arange(5, 26, 5), extend='both')
cbar.set_label('SST (°C)',fontsize=12)
cbar.ax.tick_params(labelsize=12)# 陆地填充为浅黄色
ax.add_feature(cfeature.LAND, zorder=1,facecolor='lightyellow',edgecolor='black')# 绘制海岸线
ax.add_feature(cfeature.COASTLINE, zorder=1)# 添加经纬网
gl = ax.gridlines(draw_labels=True, linewidth=1, color='gray', alpha=0.5, linestyle='-')
gl.top_labels = False
gl.right_labels = False
gl.xlocator = plt.FixedLocator(np.arange(lon_min, lon_max+1, 5))
gl.ylocator = plt.FixedLocator(np.arange(lat_min, lat_max+1, 5))
gl.xlabel_style = {'size': 12, 'color': 'black'}
gl.ylabel_style = {'size': 12, 'color': 'black'}# 显示并导出图形
outname='SST'
plt.title('Sea Surface Temperature (SST)')
plt.savefig(outname+'.png', format='png', dpi=600)
plt.savefig(outname+'.pdf', format='pdf', dpi=600)plt.show()

这篇关于python中利用cartopy库绘制SST图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024613

相关文章

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我