C++标准模板(STL)- 迭代器库-迭代器原语-为迭代器各项性质提供统一接口

本文主要是介绍C++标准模板(STL)- 迭代器库-迭代器原语-为迭代器各项性质提供统一接口,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迭代器库-迭代器原语

迭代器库提供了五种迭代器的定义,同时还提供了迭代器特征、适配器及相关的工具函数。

迭代器分类

迭代器共有五 (C++17 前)六 (C++17 起)种:遗留输入迭代器 (LegacyInputIterator) 、遗留输出迭代器 (LegacyOutputIterator) 、遗留向前迭代器 (LegacyForwardIterator) 、遗留双向迭代器 (LegacyBidirectionalIterator) 、遗留随机访问迭代器 (LegacyRandomAccessIterator) ,及 遗留连续迭代器 (LegacyContiguousIterator) (C++17 起)。

迭代器的分类的依据并不是迭代器的类型,而是迭代器所支持的操作。换句话说,某个类型只要支持相应的操作,就可以作为迭代器使用。例如,完整对象类型指针支持所有遗留随机访问迭代器 (LegacyRandomAccessIterator) 要求的操作,于是任何需要遗留随机访问迭代器 (LegacyRandomAccessIterator) 的地方都可以使用指针。

迭代器的所有类别(除了遗留输出迭代器 (LegacyOutputIterator) 和遗留连续迭代器 (LegacyContiguousIterator) )能组织到层级中,其中更强力的迭代器类别(如遗留随机访问迭代器 (LegacyRandomAccessIterator) )支持较不强力的类别(例如遗留输入迭代器 (LegacyInputIterator) )的所有操作。若迭代器落入这些类别之一且亦满足遗留输出迭代器 (LegacyOutputIterator) 的要求,则称之为可变 迭代器并且支持输入还有输出。称非可变迭代器为迭代器。

为迭代器各项性质提供统一接口

std::iterator_traits

template< class Iter >
struct iterator_traits;

template< class T >
struct iterator_traits<T*>;

template< class T >
struct iterator_traits<const T*>;

(C++20 前)

std::iterator_traits 是类型特性类,为迭代器类型的属性提供统一的接口,使得能够仅针对迭代器实现算法。

该类定义了如下类型,与 std::iterator 中的类型定义相对应:

  • difference_type - 可用来标识迭代器间距离的有符号整数类型
  • value_type - 迭代器解除引用后所得到的值的类型。对于输出迭代器,该类型为 void
  • pointer - 指向被迭代类型 (value_type) 的指针
  • reference - 被迭代类型 (value_type) 的引用类型
  • iterator_category - 迭代器类别。必须是迭代器类别标签之一。

可以针对用户自定义迭代器特化该模版,这样,即便该类型没有提供一般的类型定义,也能获取关于该迭代器的信息。

模版形参

Iter-需要取得与之相关属性的迭代器类型

成员类型

成员类型定义
difference_typeIter::difference_type
value_typeIter::value_type
pointerIter::pointer
referenceIter::reference
iterator_categoryIter::iterator_category

Iter 没有全部五个成员类型 difference_typevalue_typepointerreferenceiterator_category ,则此模板无任何有那些名称的成员( std::iterator_traits 对 SFINAE 友好)

(C++17 起)
(C++20 前)

Iterpointer ,但拥有全部其他四个成员类型,则按如下方式声明成员类型:

成员类型定义
difference_typeIter::difference_type
value_typeIter::value_type
pointervoid
referenceIter::reference
iterator_categoryIter::iterator_category

否则,若 Iter 满足仅为说明的概念 __LegacyInputIterator ,则按如下方式声明成员类型:

成员类型定义
difference_typestd::incrementable_traits<Iter>::difference_type
value_typestd::readable_traits<Iter>::value_type
pointer若合法则为 Iter::pointer ,否则若合法则为 decltype(​std::declval<Iter&>().operator->()) ,否则为 void
reference若合法则为 Iter::reference ,否则为 std::iter_reference_t<Iter>
iterator_category若合法则为 Iter::iterator_category
否则若 Iter 满足 __LegacyRandomAccessIterator

则为 std::random_access_iterator_tag ,
否则若 Iter 满足 __LegacyBidirectionalIterator 则为 std::bidirectional_iterator_tag ,
否则若 Iter 满足 __LegacyForwardIterator 则为 std::forward_iterator_tag ,
否则为 std::input_iterator_tag

否则,若 Iter 满足仅为说明的概念 __LegacyIterator ,则按如下方式声明成员类型:

成员类型定义
difference_type若合法则为 std::incrementable_traits<Iter>::difference_type ,否则为 void
value_typevoid
pointervoid
referencevoid
iterator_categorystd::output_iterator_tag

否则,此模板无任何有这些名称的成员此模板无任何有那些名称的成员( std::iterator_traits 对 SFINAE 友好)。

(C++20 起)

特化

如果要把用户提供的类型作为迭代器使用,该类型特征可以针对这一类型进行特化。标准库中提供了针对指针类型 T * 的两种偏特化,使得可以在任何需要迭代器的算法里使用裸指针。

T * 特化成员类型

仅若 std::is_object_v<T> 为 true 才特化。

(C++20 起)
成员类型定义
difference_typestd::ptrdiff_t
value_typeT (C++20 前)std::remove_cv_t<T> (C++20 起)
pointerT*
referenceT&
iterator_categorystd::random_access_iterator_tag
iterator_concept(C++20 起)std::contiguous_iterator_tag
const T * 特化成员类型
成员类型定义
difference_typestd::ptrdiff_t
value_typeT
pointerconst T*
referenceconst T&
iterator_categorystd::random_access_iterator_tag
(C++20 前)

 

调用示例

#include <iostream>
#include <string>
#include <iterator>
#include <algorithm>
#include <functional>
#include <time.h>
#include <vector>
#include <list>
#include <deque>struct Cell
{int x;int y;Cell() = default;Cell(int a, int b): x(a), y(b) {}Cell &operator +=(const Cell &cell){x += cell.x;y += cell.y;return *this;}Cell &operator +(const Cell &cell){x += cell.x;y += cell.y;return *this;}Cell &operator *(const Cell &cell){x *= cell.x;y *= cell.y;return *this;}Cell &operator ++(){x += 1;y += 1;return *this;}bool operator <(const Cell &cell) const{if (x == cell.x){return y < cell.y;}else{return x < cell.x;}}bool operator >(const Cell &cell) const{if (x == cell.x){return y > cell.y;}else{return x > cell.x;}}bool operator ==(const Cell &cell) const{return x == cell.x && y == cell.y;}
};std::ostream &operator<<(std::ostream &os, const Cell &cell)
{os << "{" << cell.x << "," << cell.y << "}";return os;
}template<class BidirIt>
void my_reverse(BidirIt first, BidirIt last)
{//获取首尾距离typename std::iterator_traits<BidirIt>::difference_type n = std::distance(first, last);--n;while (n > 0){typename std::iterator_traits<BidirIt>::value_type tmp = *first;*first++ = *--last;*last = tmp;n -= 2;}
}int main()
{std::vector<int> vector1{1, 2, 3, 4, 5};std::cout << "vector1:  ";std::copy(vector1.cbegin(), vector1.cend(), std::ostream_iterator<int>(std::cout, " "));std::cout << std::endl;my_reverse(vector1.begin(), vector1.end());std::cout << "my_reverse:  ";std::copy(vector1.cbegin(), vector1.cend(), std::ostream_iterator<int>(std::cout, " "));std::cout << std::endl;std::list<int> list1{1, 2, 3, 4, 5};std::cout << "list1:  ";std::copy(list1.cbegin(), list1.cend(), std::ostream_iterator<int>(std::cout, " "));std::cout << std::endl;my_reverse(list1.begin(), list1.end());std::cout << "my_reverse:  ";std::copy(list1.cbegin(), list1.cend(), std::ostream_iterator<int>(std::cout, " "));std::cout << std::endl;int iArray[] = {1, 2, 3, 4, 5};std::cout << "iArray:  ";std::copy(std::begin(iArray), std::end(iArray), std::ostream_iterator<int>(std::cout, " "));std::cout << std::endl;my_reverse(iArray, iArray + 5);std::cout << "my_reverse:  ";std::copy(std::begin(iArray), std::end(iArray), std::ostream_iterator<int>(std::cout, " "));std::cout << std::endl;//    std::istreambuf_iterator<char> i1(std::cin), i2;
//    my_reverse(i1, i2); // 编译错误std::deque<Cell> deque1({Cell{101, 101}, Cell{102, 102},Cell{103, 103}, Cell{104, 104}, Cell{105, 105}});std::cout << "deque1:  ";std::copy(deque1.cbegin(), deque1.cend(), std::ostream_iterator<Cell>(std::cout, " "));std::cout << std::endl;my_reverse(deque1.begin(), deque1.end());std::cout << "my_reverse:  ";std::copy(deque1.cbegin(), deque1.cend(), std::ostream_iterator<Cell>(std::cout, " "));std::cout << std::endl;return 0;
}

输出

vector1:  1 2 3 4 5
my_reverse:  5 4 3 2 1
list1:  1 2 3 4 5
my_reverse:  5 4 3 2 1
iArray:  1 2 3 4 5
my_reverse:  5 4 3 2 1
deque1:  {101,101} {102,102} {103,103} {104,104} {105,105}
my_reverse:  {105,105} {104,104} {103,103} {102,102} {101,101}

这篇关于C++标准模板(STL)- 迭代器库-迭代器原语-为迭代器各项性质提供统一接口的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024067

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

MySQL中C接口的实现

《MySQL中C接口的实现》本节内容介绍使用C/C++访问数据库,包括对数据库的增删查改操作,主要是学习一些接口的调用,具有一定的参考价值,感兴趣的可以了解一下... 目录准备mysql库使用mysql库编译文件官方API文档对象的创建和关闭链接数据库下达sql指令select语句前言:本节内容介绍使用C/

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned