基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A)

本文主要是介绍基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

海冰是冰冻圈的重要组成部分,海冰的变化信息对航行安全和自然资源开采等非常重要,许多船舶没有加固防冰设备,因此,必须避开所有的冰区。尤其当冰压很高时,即使破冰船也很难在冰层中前行。为了安全航行,获取发生改变的冰层覆盖信息具有重要价值。通过分析在同一地理区域内不同时间拍摄的两张遥感图像来识别海冰中明显变化的区域,从而对海冰变化检测进行研究。合成孔径雷达SAR图像已被证明是海冰监测的理想来源,因其有源微波传感器,可以全天时主动获取地表遥感信息,且不受阳光条件和云层覆盖的影响。但也因其存在固有的乘性散斑噪声,为SAR图像的变化检测带来挑战性。由于缺乏强大的自动图像解读技术,依靠人工对SAR图像中的海冰变化信息进行检测耗时且主观。目前,现有的海冰变化检测方法还面临一些问题,如抗噪性能不强,差分图像质量不高,分类效果不好,以及海冰变化检测数据集稀少等。

通常图像的变化检测可分为监督和无监督方法。与监督方法相关的主要问题是缺乏地面参考数据,这通常涉及劳动密集型和耗时的人工标记过程。因此,无监督方法在该领域得到了广泛的发展和应用。无监督方法主要组成部分包括:图像预处理,差分图像生成,以及变化区域分割。图像预处理主要包括几何校正和去噪,在生成差分图像时,主要有差值法、比值法、对数比算子、均值比算子、基于邻域的比值差异法等。通常使用对数比算子,因为它对散斑噪声具有鲁棒性。图像分割阶段,聚类方法非常流行,聚类就是将数据集中大量未标注的数据按照某种相似性进行划分,并通过迭代运算调整优化聚类中心,将相似度大的数据划为一类,而不同类别之间的数据保持较大的差异性,因为它们不需要差分图像分布。

鉴于此,采用一种基于卷积-小波神经网络的SAR图像海冰变化检测方法,网络结构如下:

图片

 


function CM = hclustering(pixel_vector, Xd)[ylen, xlen] = size(Xd);% feature vectors are divided into three categories by using FCMoptions = [2.0; 100; 1e-5; 0];fprintf('... ... 1st round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,2, options);maxU = max(U);
index{1} = find(U(1,:) == maxU);
index{2} = find(U(2,:) == maxU);  
if numel(index{1})<numel(index{2})ttr = numel(index{1})/(ylen*xlen)*1.25;ttl = numel(index{1})/(ylen*xlen)/1.10;
elsettr = numel(index{2})/(ylen*xlen)*1.25;ttl = numel(index{2})/(ylen*xlen)/1.10;
endc_num = 5;
fprintf('... ... 2nd round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,c_num, options);Xdk =  zeros(ylen*xlen, 1);
CMk0 = zeros(ylen*xlen, 1);Xdk = reshape(Xd, ylen*xlen, 1);maxU = max(U);for i = 1:c_numindex{i} = find(U(i,:) == maxU);    
endfor i = 1:c_numidx_mean(i) = mean(Xdk(index{i}));
end[idx_mean, idx] = sort(idx_mean);for i = 1:c_numidx_num(i) = numel(index{idx(i)});
endCMk0(index{idx(c_num)}) = 0.0;
c = idx_num(c_num);
mid_lab = 0;for i = 1:c_num-1c = c+idx_num(c_num-i);if c / (ylen*xlen) < ttlCMk0(index{idx(c_num-i)}) = 0.0;elseif c / (ylen*xlen) >= ttl && c / (ylen*xlen) < ttrCMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseif mid_lab == 0CMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseCMk0(index{idx(c_num-i)}) = 1;endend
end
基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB 2018)
原创2024-06-02 11:48·哥本哈根诠释2023
海冰是冰冻圈的重要组成部分,海冰的变化信息对航行安全和自然资源开采等非常重要,许多船舶没有加固防冰设备,因此,必须避开所有的冰区。尤其当冰压很高时,即使破冰船也很难在冰层中前行。为了安全航行,获取发生改变的冰层覆盖信息具有重要价值。通过分析在同一地理区域内不同时间拍摄的两张遥感图像来识别海冰中明显变化的区域,从而对海冰变化检测进行研究。合成孔径雷达SAR图像已被证明是海冰监测的理想来源,因其有源微波传感器,可以全天时主动获取地表遥感信息,且不受阳光条件和云层覆盖的影响。但也因其存在固有的乘性散斑噪声,为SAR图像的变化检测带来挑战性。由于缺乏强大的自动图像解读技术,依靠人工对SAR图像中的海冰变化信息进行检测耗时且主观。目前,现有的海冰变化检测方法还面临一些问题,如抗噪性能不强,差分图像质量不高,分类效果不好,以及海冰变化检测数据集稀少等。通常图像的变化检测可分为监督和无监督方法。与监督方法相关的主要问题是缺乏地面参考数据,这通常涉及劳动密集型和耗时的人工标记过程。因此,无监督方法在该领域得到了广泛的发展和应用。无监督方法主要组成部分包括:图像预处理,差分图像生成,以及变化区域分割。图像预处理主要包括几何校正和去噪,在生成差分图像时,主要有差值法、比值法、对数比算子、均值比算子、基于邻域的比值差异法等。通常使用对数比算子,因为它对散斑噪声具有鲁棒性。图像分割阶段,聚类方法非常流行,聚类就是将数据集中大量未标注的数据按照某种相似性进行划分,并通过迭代运算调整优化聚类中心,将相似度大的数据划为一类,而不同类别之间的数据保持较大的差异性,因为它们不需要差分图像分布。鉴于此,采用一种基于卷积-小波神经网络的SAR图像海冰变化检测方法,网络结构如下:function CM = hclustering(pixel_vector, Xd)[ylen, xlen] = size(Xd);% feature vectors are divided into three categories by using FCMoptions = [2.0; 100; 1e-5; 0];fprintf('... ... 1st round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,2, options);maxU = max(U);
index{1} = find(U(1,:) == maxU);
index{2} = find(U(2,:) == maxU);  
if numel(index{1})<numel(index{2})ttr = numel(index{1})/(ylen*xlen)*1.25;ttl = numel(index{1})/(ylen*xlen)/1.10;
elsettr = numel(index{2})/(ylen*xlen)*1.25;ttl = numel(index{2})/(ylen*xlen)/1.10;
endc_num = 5;
fprintf('... ... 2nd round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,c_num, options);Xdk =  zeros(ylen*xlen, 1);
CMk0 = zeros(ylen*xlen, 1);Xdk = reshape(Xd, ylen*xlen, 1);maxU = max(U);for i = 1:c_numindex{i} = find(U(i,:) == maxU);    
endfor i = 1:c_numidx_mean(i) = mean(Xdk(index{i}));
end[idx_mean, idx] = sort(idx_mean);for i = 1:c_numidx_num(i) = numel(index{idx(i)});
endCMk0(index{idx(c_num)}) = 0.0;
c = idx_num(c_num);
mid_lab = 0;for i = 1:c_num-1c = c+idx_num(c_num-i);if c / (ylen*xlen) < ttlCMk0(index{idx(c_num-i)}) = 0.0;elseif c / (ylen*xlen) >= ttl && c / (ylen*xlen) < ttrCMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseif mid_lab == 0CMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseCMk0(index{idx(c_num-i)}) = 1;endend
endCM = reshape(CMk0, ylen, xlen);
完整代码可通过知乎学术咨询获得:https://www.zhihu.com/consult/people/792359672131756032?isMe=1

结果如下:

图片

图片

图片

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024046

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自