基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A)

本文主要是介绍基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

海冰是冰冻圈的重要组成部分,海冰的变化信息对航行安全和自然资源开采等非常重要,许多船舶没有加固防冰设备,因此,必须避开所有的冰区。尤其当冰压很高时,即使破冰船也很难在冰层中前行。为了安全航行,获取发生改变的冰层覆盖信息具有重要价值。通过分析在同一地理区域内不同时间拍摄的两张遥感图像来识别海冰中明显变化的区域,从而对海冰变化检测进行研究。合成孔径雷达SAR图像已被证明是海冰监测的理想来源,因其有源微波传感器,可以全天时主动获取地表遥感信息,且不受阳光条件和云层覆盖的影响。但也因其存在固有的乘性散斑噪声,为SAR图像的变化检测带来挑战性。由于缺乏强大的自动图像解读技术,依靠人工对SAR图像中的海冰变化信息进行检测耗时且主观。目前,现有的海冰变化检测方法还面临一些问题,如抗噪性能不强,差分图像质量不高,分类效果不好,以及海冰变化检测数据集稀少等。

通常图像的变化检测可分为监督和无监督方法。与监督方法相关的主要问题是缺乏地面参考数据,这通常涉及劳动密集型和耗时的人工标记过程。因此,无监督方法在该领域得到了广泛的发展和应用。无监督方法主要组成部分包括:图像预处理,差分图像生成,以及变化区域分割。图像预处理主要包括几何校正和去噪,在生成差分图像时,主要有差值法、比值法、对数比算子、均值比算子、基于邻域的比值差异法等。通常使用对数比算子,因为它对散斑噪声具有鲁棒性。图像分割阶段,聚类方法非常流行,聚类就是将数据集中大量未标注的数据按照某种相似性进行划分,并通过迭代运算调整优化聚类中心,将相似度大的数据划为一类,而不同类别之间的数据保持较大的差异性,因为它们不需要差分图像分布。

鉴于此,采用一种基于卷积-小波神经网络的SAR图像海冰变化检测方法,网络结构如下:

图片

 


function CM = hclustering(pixel_vector, Xd)[ylen, xlen] = size(Xd);% feature vectors are divided into three categories by using FCMoptions = [2.0; 100; 1e-5; 0];fprintf('... ... 1st round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,2, options);maxU = max(U);
index{1} = find(U(1,:) == maxU);
index{2} = find(U(2,:) == maxU);  
if numel(index{1})<numel(index{2})ttr = numel(index{1})/(ylen*xlen)*1.25;ttl = numel(index{1})/(ylen*xlen)/1.10;
elsettr = numel(index{2})/(ylen*xlen)*1.25;ttl = numel(index{2})/(ylen*xlen)/1.10;
endc_num = 5;
fprintf('... ... 2nd round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,c_num, options);Xdk =  zeros(ylen*xlen, 1);
CMk0 = zeros(ylen*xlen, 1);Xdk = reshape(Xd, ylen*xlen, 1);maxU = max(U);for i = 1:c_numindex{i} = find(U(i,:) == maxU);    
endfor i = 1:c_numidx_mean(i) = mean(Xdk(index{i}));
end[idx_mean, idx] = sort(idx_mean);for i = 1:c_numidx_num(i) = numel(index{idx(i)});
endCMk0(index{idx(c_num)}) = 0.0;
c = idx_num(c_num);
mid_lab = 0;for i = 1:c_num-1c = c+idx_num(c_num-i);if c / (ylen*xlen) < ttlCMk0(index{idx(c_num-i)}) = 0.0;elseif c / (ylen*xlen) >= ttl && c / (ylen*xlen) < ttrCMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseif mid_lab == 0CMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseCMk0(index{idx(c_num-i)}) = 1;endend
end
基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB 2018)
原创2024-06-02 11:48·哥本哈根诠释2023
海冰是冰冻圈的重要组成部分,海冰的变化信息对航行安全和自然资源开采等非常重要,许多船舶没有加固防冰设备,因此,必须避开所有的冰区。尤其当冰压很高时,即使破冰船也很难在冰层中前行。为了安全航行,获取发生改变的冰层覆盖信息具有重要价值。通过分析在同一地理区域内不同时间拍摄的两张遥感图像来识别海冰中明显变化的区域,从而对海冰变化检测进行研究。合成孔径雷达SAR图像已被证明是海冰监测的理想来源,因其有源微波传感器,可以全天时主动获取地表遥感信息,且不受阳光条件和云层覆盖的影响。但也因其存在固有的乘性散斑噪声,为SAR图像的变化检测带来挑战性。由于缺乏强大的自动图像解读技术,依靠人工对SAR图像中的海冰变化信息进行检测耗时且主观。目前,现有的海冰变化检测方法还面临一些问题,如抗噪性能不强,差分图像质量不高,分类效果不好,以及海冰变化检测数据集稀少等。通常图像的变化检测可分为监督和无监督方法。与监督方法相关的主要问题是缺乏地面参考数据,这通常涉及劳动密集型和耗时的人工标记过程。因此,无监督方法在该领域得到了广泛的发展和应用。无监督方法主要组成部分包括:图像预处理,差分图像生成,以及变化区域分割。图像预处理主要包括几何校正和去噪,在生成差分图像时,主要有差值法、比值法、对数比算子、均值比算子、基于邻域的比值差异法等。通常使用对数比算子,因为它对散斑噪声具有鲁棒性。图像分割阶段,聚类方法非常流行,聚类就是将数据集中大量未标注的数据按照某种相似性进行划分,并通过迭代运算调整优化聚类中心,将相似度大的数据划为一类,而不同类别之间的数据保持较大的差异性,因为它们不需要差分图像分布。鉴于此,采用一种基于卷积-小波神经网络的SAR图像海冰变化检测方法,网络结构如下:function CM = hclustering(pixel_vector, Xd)[ylen, xlen] = size(Xd);% feature vectors are divided into three categories by using FCMoptions = [2.0; 100; 1e-5; 0];fprintf('... ... 1st round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,2, options);maxU = max(U);
index{1} = find(U(1,:) == maxU);
index{2} = find(U(2,:) == maxU);  
if numel(index{1})<numel(index{2})ttr = numel(index{1})/(ylen*xlen)*1.25;ttl = numel(index{1})/(ylen*xlen)/1.10;
elsettr = numel(index{2})/(ylen*xlen)*1.25;ttl = numel(index{2})/(ylen*xlen)/1.10;
endc_num = 5;
fprintf('... ... 2nd round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,c_num, options);Xdk =  zeros(ylen*xlen, 1);
CMk0 = zeros(ylen*xlen, 1);Xdk = reshape(Xd, ylen*xlen, 1);maxU = max(U);for i = 1:c_numindex{i} = find(U(i,:) == maxU);    
endfor i = 1:c_numidx_mean(i) = mean(Xdk(index{i}));
end[idx_mean, idx] = sort(idx_mean);for i = 1:c_numidx_num(i) = numel(index{idx(i)});
endCMk0(index{idx(c_num)}) = 0.0;
c = idx_num(c_num);
mid_lab = 0;for i = 1:c_num-1c = c+idx_num(c_num-i);if c / (ylen*xlen) < ttlCMk0(index{idx(c_num-i)}) = 0.0;elseif c / (ylen*xlen) >= ttl && c / (ylen*xlen) < ttrCMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseif mid_lab == 0CMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseCMk0(index{idx(c_num-i)}) = 1;endend
endCM = reshape(CMk0, ylen, xlen);
完整代码可通过知乎学术咨询获得:https://www.zhihu.com/consult/people/792359672131756032?isMe=1

结果如下:

图片

图片

图片

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024046

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处