简单的基于小波分解和独立分量分析的脑电信号降噪(Python)

2024-06-02 12:28

本文主要是介绍简单的基于小波分解和独立分量分析的脑电信号降噪(Python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

脑电信号是一种典型的非平稳随机信号且存在一定的非高斯性和非线性。传统的分析处理方法是将脑电信号近似看做线性、准平稳、高斯分布的随机信号,这使得分析结果往往不能令人满意,实用性较差。现代的小波变换方法和独立分量分析方法的提出为有效地分析脑电信号提供了新的途径。由于所要提取的特征波频率不精确并受到噪声的影响,如果单独应用小波提取出的特征信号往往特征不够明显。独立分量分析是根据信号的多元统计特性进行分析处理,可以将多道混合信号进行独立分离。考虑到所要提取的特征波就是混合脑电信号中的一个独立分量,应用独立分量分析在一定程度上可以分离出特征波。

鉴于此,采用简单的小波分解和独立分量分析对脑电信号降噪,完整代码如下:

import numpy as np
import matplotlib.pyplot as plt
import pyedflib
# import sklearn.linear_model as slm
from sklearn import metrics
from statsmodels.tsa.ar_model import AutoReg
# import scipy
# import scipy.signal as signal
from sklearn.decomposition import FastICA
import pywtclass EEGSignalProcessing:def __init__(self) -> None:passdef read_signal(filename, number_of_samples = None, offset = 0):file = pyedflib.EdfReader(filename)if number_of_samples is None:number_of_samples = file.getNSamples()[0]number_of_signals = file.signals_in_filesignal = np.zeros((number_of_signals, number_of_samples))for i in range(number_of_signals):signal[i, :] = file.readSignal(i)[offset:offset + number_of_samples]file.close()return signaldef plot_signal(data, sampling_frequency, title, number_of_channels = None, channel_labels = None, yaxis_label = None, xaxis_label = None):       plt.rcParams['font.size'] = '16'fig = plt.figure()ax = fig.add_subplot(1,1,1)lenght = len(data)if number_of_channels is None:number_of_channels_useful = range(0, lenght)else:if isinstance(number_of_channels, str):number_of_channels_useful = range(0, lenght-1)else:number_of_channels_useful = number_of_channelsfor channel in number_of_channels_useful:if channel_labels is None:label = 'ch' + str(channel + 1)else:label = channel_labels[channel]limit = data[channel, :].sizex_values = [num/sampling_frequency for num in range(0, limit)]ax.plot(x_values, data[channel, :], label = label)fig.set_size_inches(15,5)plt.title(title)plt.legend()if yaxis_label is not None:plt.ylabel(yaxis_label)if xaxis_label is not None:plt.xlabel(xaxis_label)plt.show(block = True)def channel_desynchronize(data_1d, delay, value = 0):number_of_samples = len(data_1d)if delay > 0:for i in range(number_of_samples - 1, delay - 1, -1):data_1d[i] = data_1d[i - delay]for i in range(0, delay):data_1d[i] = valueif delay < 0:delay = -delayfor i in range(0, number_of_samples - delay):data_1d[i] = data_1d[i + delay]for i in range(number_of_samples - delay, number_of_samples):data_1d[i] = value        def all_channels_desynchronize(data, delay, value = 0):for i in range(0, len(data)):EEGSignalProcessing.channel_desynchronize(data[i], delay, value)        class NoiseReduction:def autoregression(data, delay):signals_number = len(data)samples_number = len(data[0])output = np.zeros((signals_number, samples_number))for i in range(0, signals_number):model = AutoReg(data[i], lags=delay)model_fit = model.fit()predictions = model_fit.predict(start=0, end=samples_number-1, dynamic=False)output[i, :samples_number] = predictionsreturn outputdef wavelet(linear_array):name = 'bior3.1'# Create wavelet object and define parameterswav = pywt.Wavelet(name)max_level = pywt.dwt_max_level(len(linear_array) + 1, wav.dec_len)# print("Maximum level is " + str(max_level))threshold = 0.04  # Threshold for filtering# Decompose into wavelet components, to the level selected:coeffs = pywt.wavedec(linear_array, name, level=5)plt.figure()for i in range(1, len(coeffs)):plt.subplot(max_level, 1, i)plt.plot(coeffs[i])coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i]))plt.plot(coeffs[i])plt.show()datarec = pywt.waverec(coeffs, name)return np.array(datarec)def wavelet_all_channels(data):output = []for c in data:output.append(EEGSignalProcessing.NoiseReduction.wavelet(c))return np.stack(output)def ica(data, mask=None):# maska do wyboru składowychreduce_level = [True, True, True, True, True, True, True, True, True]reduce_level[7] = Falseif mask is not None:reduce_level = masksigT = data.Tn = data.shape[0]# obliczanie ICAica = FastICA(n_components=n)sig_ica = ica.fit_transform(sigT)# Macierz mmieszaniaA_ica = ica.mixing_# Przycięcie macierzy mieszającej, aby odrzucić najmniej znaczące wartościA_ica_reduced = A_icasig_ica = sig_ica[:, reduce_level]X_reduced = np.dot(sig_ica, A_ica_reduced.T[reduce_level, :]) + ica.mean_ica_reconstruct = X_reduced.Treturn ica_reconstructclass Noise:def add_uniform_noise(data, low, high, seed=None):signals_number = len(data)samples_number = len(data[0])output = np.zeros((signals_number, samples_number))if seed is not None:np.random.seed(seed)for i in range(signals_number):if isinstance(low, str):if low == "min_value":low = min(data[i])if isinstance(high, str):if high == "max_value":high = max(data[i])noise = np.random.uniform(low, high, samples_number)output[i] = data[i] + noisereturn outputdef add_normal_noise(data, mean, std, amplitude=1, seed=None):signals_number = len(data)samples_number = len(data[0])output = np.zeros((signals_number, samples_number))if seed is not None:np.random.seed(seed)for i in range(signals_number):noise = np.random.normal(mean, std, samples_number)output[i] = data[i] + noisereturn amplitude*outputdef add_triangular_noise(data, left, peak, right, seed=None):signals_number = len(data)samples_number = len(data[0])output = np.zeros((signals_number, samples_number))if seed is not None:np.random.seed(seed)for i in range(signals_number):noise = np.random.triangular(left, peak, right, samples_number)output[i] = data[i] + noisereturn outputclass Metrics:def __init__(self) -> None:passdef evaluate_signal(signal, prediction, cut_left=100, cut_right=100):signal_cut = signal[cut_left:-cut_right]predicted_cut = prediction[cut_left:-cut_right]# metryki z sklearnmae = metrics.mean_absolute_error(signal_cut, predicted_cut)mse = metrics.mean_squared_error(signal_cut, predicted_cut)# wyświetlanieprint('MAE z biblioteki sklearn: {}'.format(round(mae, 2)))print('MSE z biblioteki sklearn: {}'.format(round(mse, 2)))def differantial(sigA, sigB, cutleft=100, cutright=100):differential = sigA[:,cutleft:-cutright] - sigB[:,cutleft:-cutright]return differentialdef main():channels_to_plot = [0,1,2,3,4]# signal = EEGSignalProcessing.read_signal(filename = "Subject00_2.edf", number_of_samples=1000)# signal = EEGSignalProcessing.read_signal(filename = "Subject00_1.edf", number_of_samples=1000)signal = EEGSignalProcessing.read_signal(filename = "rsvp_10Hz_08b.edf", number_of_samples=1000)EEGSignalProcessing.plot_signal(signal,sampling_frequency= 2048, title = "Orginalne sygnały EEG", number_of_channels = channels_to_plot,yaxis_label='Wartosc sygnalu', xaxis_label='Czas [s]')low = 2high = 4sig_noise_uniform = EEGSignalProcessing.Noise.add_uniform_noise(signal, low=low, high=high, seed=100)EEGSignalProcessing.plot_signal(sig_noise_uniform, title="Zaszumiony sygnał 5 kanałów EEG (Rozkład Jednostajny Low={}, High={})".format(low, high), sampling_frequency=2048, number_of_channels=channels_to_plot, yaxis_label='Wartość sygnału', xaxis_label='Czas [s]')mean = 0std = 2ampl = 2sig_noise_normal = EEGSignalProcessing.Noise.add_normal_noise(signal, mean=mean, std=std, amplitude=ampl, seed=100)EEGSignalProcessing.plot_signal(sig_noise_normal, title="Zaszumiony sygnał 5 kanałów EEG (Rozkład Normalny Low={}, High={})".format(mean, std), sampling_frequency=2048, number_of_channels=channels_to_plot, yaxis_label='Wartość sygnału', xaxis_label='Czas [s]')sig_n3_left = 0sig_n3_peak = 4sig_n3_right = 6sig_noise_triangular = EEGSignalProcessing.Noise.add_triangular_noise(signal, left=sig_n3_left, peak=sig_n3_peak, right=sig_n3_right, seed=100)EEGSignalProcessing.plot_signal(sig_noise_triangular, title="Zaszumiony sygnał 5 kanałów EEG (Rozkład Trójkątny Left={}, Peak={}, High={})".format(sig_n3_left, sig_n3_peak, sig_n3_right), sampling_frequency=2048, number_of_channels=channels_to_plot, yaxis_label='Wartość sygnału', xaxis_label='Czas [s]')# Odszumianie sygnałów# AutoregresjaAR_lag = 10signal_autoregresion = EEGSignalProcessing.NoiseReduction.autoregression(sig_noise_triangular, delay = AR_lag)EEGSignalProcessing.plot_signal(signal_autoregresion,title="5 odszumionych kanałów EEG - regresja liniowa delay={}".format(AR_lag), sampling_frequency=2048, number_of_channels=channels_to_plot,yaxis_label='wartość sygnału', xaxis_label='czas [s]')# Waveletsignal_wavelet = EEGSignalProcessing.NoiseReduction.wavelet_all_channels(sig_noise_triangular)EEGSignalProcessing.plot_signal(signal_wavelet,title="5 odszumionych kanałów EEG - Wavelet", sampling_frequency=2048, number_of_channels=channels_to_plot,yaxis_label='wartość sygnału', xaxis_label='czas [s]')# ICAsignal_ICA = EEGSignalProcessing.NoiseReduction.ica(sig_noise_triangular)EEGSignalProcessing.plot_signal(signal_ICA,title="5 odszumionych kanałów EEG - ICA", sampling_frequency=2048, number_of_channels=channels_to_plot,yaxis_label='wartość sygnału', xaxis_label='czas [s]')# Metrykich = 4noise_signal = sig_noise_normalprint('\nORYGINALNY')Metrics.evaluate_signal(signal[ch], signal[ch])print('\nNIEODSZUMIONY, dodano szum rozkład normalny')Metrics.evaluate_signal(signal[ch], noise_signal[ch])print('\nODSZUMIONY, najpierw dodano szum rozkład normalny, potem autoregresja')Metrics.evaluate_signal(signal[ch], signal_autoregresion[ch])print('\nODSZUMIONY, najpierw dodano szum rozkład normalny, potem ICA')Metrics.evaluate_signal(signal[ch], signal_ICA[ch])print('\nODSZUMIONY, najpierw dodano szum rozkład normalny, potem wavelet')Metrics.evaluate_signal(signal[ch], signal_wavelet[ch])# Sygnał różnicowydifferential_noise = Metrics.differantial(sig_noise_normal, signal)differential_AR = Metrics.differantial(signal_autoregresion, signal)differential_ICA = Metrics.differantial(signal_ICA, signal)differential_Wavelet = Metrics.differantial(signal_wavelet, signal)EEGSignalProcessing.plot_signal(differential_noise, title="Sygnał różnicowy, zaszumiony-orginalny",sampling_frequency=2048, number_of_channels=[ch], yaxis_label="Wartość sygnału",xaxis_label="Czas [s]")EEGSignalProcessing.plot_signal(differential_AR, title="Sygnał różnicowy, AR-orginalny",sampling_frequency=2048, number_of_channels=[ch], yaxis_label="Wartość sygnału",xaxis_label="Czas [s]")EEGSignalProcessing.plot_signal(differential_ICA, title="Sygnał różnicowy, ICA-orginalny",sampling_frequency=2048, number_of_channels=[ch], yaxis_label="Wartość sygnału",xaxis_label="Czas [s]")EEGSignalProcessing.plot_signal(differential_Wavelet, title="Sygnał różnicowy, wavelet-orginalny",sampling_frequency=2048, number_of_channels=[ch], yaxis_label="Wartość sygnału",xaxis_label="Czas [s]")
完整代码:https://mbd.pub/o/bread/mbd-ZZWYlJlpif __name__ == '__main__':main()

图片

图片

图片

图片

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于简单的基于小波分解和独立分量分析的脑电信号降噪(Python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023966

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.