Pytorch-Lighting使用教程(MNIST为例)

2024-06-02 07:12

本文主要是介绍Pytorch-Lighting使用教程(MNIST为例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、pytorch-lighting简介

1.1 pytorch-lighting是什么

pytorch-lighting(简称pl),基于 PyTorch 的框架。它的核心思想是,将学术代码模型定义、前向 / 反向、优化器、验证等)与工程代码for-loop,保存、tensorboard 日志、训练策略等)解耦开来,使得代码更为简洁清晰。

工程代码经常会出现在深度学习代码中,PyTorch Lightning 对这部分逻辑进行了封装,只需要在 Trainer 类中简单设置即可调用,无需重复造轮子。

1.2 pytorch-lighting优势

  • 通过抽象出样板工程代码,可以更容易地识别和理解ML代码;
  • Lightning的统一结构使得在现有项目的基础上进行构建和理解变得非常容易;
  • Lightning 自动化的代码是用经过全面测试、定期维护并遵循ML最佳实践的高质量代码构建的;

pytorch-lighting最大的好处:

(1)是摆脱了硬件依赖,不需要在程序中显式设置.cuda() 等,PyTorch Lightning 会自动将模型、张量的设备放置在合适的设备;移除.train() 等代码,这也会自动切换

(2)支持分布式训练,自动分配资源,能够很好的进行大规模的DL训练

(3)代码量较少,只需要关心关键的逻辑代码,而框架性的东西,pytorch-lighting已经帮你解决(如自动训练,自动debug)


二、基于Pytorch-Lighting框架训练MNIST模型

1、仅仅训练

下载的所有的数据集都用于训练(没有评估和测试过程,不清楚模型的好与坏)。

# 1. 导入所需的模块
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import lightning.pytorch as pl# 2. 定义编码器和解码器
# 2.1 定义基础编码器Encoder
class Encoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))def forward(self, x):return self.l1(x)# 2.2 定义基础解码器Decoder
class Decoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))def forward(self, x):return self.l1(x)# 3. 定义LightningModule
class LitAutoEncoder(pl.LightningModule):# 3.1 加载基础模型def __init__(self, encoder, decoder):super().__init__()self.encoder = encoderself.decoder = decoder# 3.2 训练过程设置def training_step(self, batch, batch_idx):  # 每一个batch数据运算计算loss# training_step defines the train loop.x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)loss = F.mse_loss(x_hat, x)return loss# 3.3 优化器设置def configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)return optimizer# 4. 定义训练数据
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train_loader = DataLoader(dataset)# 5. 实例化模型
autoencoder = LitAutoEncoder(Encoder(), Decoder())# 6. 开始训练
trainer = pl.Trainer(max_epochs=10)
trainer.fit(model=autoencoder, train_dataloaders=train_loader)

class LitAutoEncoder(pl.LightningModule):

  • 将模型定义代码写在__init__
  • 定义前向传播逻辑
  • 将优化器代码写在 configure_optimizers 钩子中
  • 训练代码写在 training_step 钩子中,可使用 self.log 随时记录变量的值,会保存在 tensorboard 中
  • 验证代码写在 validation_step 钩子中
  • 移除硬件调用.cuda() 等,PyTorch Lightning 会自动将模型、张量的设备放置在合适的设备;移除.train() 等代码,这也会自动切换
  • 根据需要,重写其他钩子函数,例如 validation_epoch_end,对 validation_step 的结果进行汇总;train_dataloader,定义训练数据的加载逻辑
  • 实例化 Lightning Module 和 Trainer 对象,传入数据集
  • 定义训练参数和回调函数,例如训练设备、数量、保存策略,Early Stop、半精度等

运行结果:

2、添加验证和测试模块

在训练之后,加入了测试和评估功能,能更好的指导模型的性能。

# 1. 导入所需的模块
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import lightning.pytorch as plimport torch.utils.data as data
from torchvision import datasets
import torchvision.transforms as transformsfrom torch.utils.data import DataLoader# 2. 定义编码器和解码器
# 2.1 定义基础编码器Encoder
class Encoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))def forward(self, x):return self.l1(x)# 2.2 定义基础解码器Decoder
class Decoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))def forward(self, x):return self.l1(x)# 3. 定义LightningModule
class LitAutoEncoder(pl.LightningModule):# 3.1 加载基础模型def __init__(self, encoder, decoder):super().__init__()self.encoder = encoderself.decoder = decoder# 3.2 训练过程设置def training_step(self, batch, batch_idx):  # 每一个batch数据运算计算loss# training_step defines the train loop.x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)loss = F.mse_loss(x_hat, x)return loss# 3.3 测试过程设置def test_step(self, batch, batch_idx):# this is the test loopx, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)test_loss = F.mse_loss(x_hat, x)self.log("test_loss", test_loss)# 3.4 验证过程设置def validation_step(self, batch, batch_idx):# this is the validation loopx, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)val_loss = F.mse_loss(x_hat, x)self.log("val_loss", val_loss)# 3.5 优化器设置def configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)return optimizer# 4. 定义训练数据
'''
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train_loader = DataLoader(dataset)
'''# 4.1 分别下载并加载训练集和测试集
transform = transforms.ToTensor()
train_set = datasets.MNIST(os.getcwd(), download=False, train=True, transform=transform)
test_set = datasets.MNIST(os.getcwd(), download=False, train=False, transform=transform)# 4.2 将训练集中的20%用于验证集
train_set_size = int(len(train_set) * 0.8)
valid_set_size = len(train_set) - train_set_size# 4.3 设置种子
seed = torch.Generator().manual_seed(42)# 4.4 从训练集中随机拿到80%的测试集和20%的验证集
train_set, valid_set = data.random_split(train_set, [train_set_size, valid_set_size], generator=seed)# 4.5 分别加载训练集和测试集
train_loader = DataLoader(train_set)
valid_loader = DataLoader(valid_set)# 5. 实例化模型
autoencoder = LitAutoEncoder(Encoder(), Decoder())# 6. 实例化Trainer
trainer = pl.Trainer(max_epochs=10)# 7. 开始训练和评估
trainer.fit(autoencoder, train_loader, valid_loader)# 8.开始测试
trainer.test(model=autoencoder, dataloaders=DataLoader(test_set))

3、权重 & 超参的保存和加载

当模型正在训练时,性能会随着它继续看到更多数据而发生变化。

1)训练完成后,使用在训练过程中发现的最佳性能相对应的权重;

2)权重可以让训练在训练过程中断的情况下从原来的位置恢复。

保存权重:Lightning 会自动为你在当前工作目录下保存一个权重,其中包含上一次训练的状态。这能确保在训练中断的情况下恢复训练。

3.1 自动在当前目录下保存checkpoint

# simply by using the Trainer you get automatic checkpointing
trainer = Trainer()

3.2 指定checkpoint保存的目录

# saves checkpoints to 'some/path/' at every epoch end
trainer = Trainer(default_root_dir="some/path/")

3.3 加载checkpoint

# trainer.fit(autoencoder, train_loader, valid_loader, ckpt_path="/home/gvlib_ljh/class/Lightning_mnist/lightning_logs/version_25/checkpoints/epoch=9-step=160000.ckpt")

4、可视化

在模型开发中,我们跟踪感兴趣的值,例如validation_loss,以可视化模型的学习过程。模型开发就像驾驶一辆没有窗户的汽车,图表和日志提供了了解汽车行驶方向的窗口。借助 Lightning,可以可视化任何您能想到的东西:数字、文本、图像、音频。

要跟踪指标,只需使用 LightningModule 内可用的 self.log 方法。

class LitModel(pl.LightningModule):def training_step(self, batch, batch_idx):value = ...self.log("some_value", value)

同时记录多个指标:

values = {"loss": loss, "acc": acc, "metric_n": metric_n}  # add more items if needed
self.log_dict(values)

4.1 命令行查看

要在命令行进度栏中查看指标,请将 prog_bar 参数设置为 True。

self.log(..., prog_bar=True)

4.2 浏览器查看

默认情况下,Lightning 使用 Tensorboard(如果可用)和一个简单的 CSV 记录器

在命令行中输入(注意:一定是lightning_logs所在的目录):

tensorboard --logdir=lightning_logs/

Tensorboard界面:

Tensorboard输出分析:

完整的代码:

# 1. 导入所需的模块
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import lightning.pytorch as plimport torch.utils.data as data
from torchvision import datasets
import torchvision.transforms as transformsfrom torch.utils.data import DataLoaderfrom pytorch_lightning.loggers import TensorBoardLogger# 设置浮点矩阵乘法精度为 'medium'
torch.set_float32_matmul_precision('medium')# 2. 定义编码器和解码器
# 2.1 定义基础编码器Encoder
class Encoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))def forward(self, x):return self.l1(x)# 2.2 定义基础解码器Decoder
class Decoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))def forward(self, x):return self.l1(x)# 3. 定义LightningModule
class LitAutoEncoder(pl.LightningModule):# 3.1 加载基础模型def __init__(self, encoder, decoder):super().__init__()self.encoder = encoderself.decoder = decoder# 3.2 训练过程设置def training_step(self, batch, batch_idx):  # 每一个batch数据运算计算loss# training_step defines the train loop.x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)loss = F.mse_loss(x_hat, x)batch_idx_value = batch_idx + 1print(" ")values = {"loss": loss, "batch_idx_value": batch_idx_value}  # add more items if neededself.log_dict(values)# 在命令行界面显示log'''sync_dist=True:分布式计算,数据同步标志prog_bar=True:在控制台上显示'''self.log("train_loss", loss, sync_dist=True, prog_bar=True)return loss# 3.3 测试过程设置def test_step(self, batch, batch_idx):x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)test_loss = F.mse_loss(x_hat, x)self.log("test_loss", test_loss, sync_dist=True, prog_bar=True)# 3.4 验证过程设置def validation_step(self, batch, batch_idx):# this is the validation loopx, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)val_loss = F.mse_loss(x_hat, x)self.log("val_loss", val_loss, sync_dist=True, prog_bar=True)# 3.5 优化器设置def configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)return optimizer# 4. 定义训练数据
'''
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train_loader = DataLoader(dataset)
'''# 4.1 分别下载并加载训练集和测试集
transform = transforms.ToTensor()
train_set = datasets.MNIST(os.getcwd(), download=False, train=True, transform=transform)
test_set = datasets.MNIST(os.getcwd(), download=False, train=False, transform=transform)# 4.2 将训练集中的20%用于验证集
train_set_size = int(len(train_set) * 0.8)
valid_set_size = len(train_set) - train_set_size# 4.3 设置种子
seed = torch.Generator().manual_seed(42)# 4.4 从训练集中随机拿到80%的测试集和20%的验证集
train_set, valid_set = data.random_split(train_set, [train_set_size, valid_set_size], generator=seed)# 4.5 分别加载训练集和测试集
train_loader = DataLoader(train_set, batch_size=256, num_workers=5)
valid_loader = DataLoader(valid_set, batch_size=128, num_workers=5)# 5. 实例化模型
autoencoder = LitAutoEncoder(Encoder(), Decoder())# 6. 实例化Trainer
trainer = pl.Trainer(max_epochs=1000)# 7. 开始训练和评估
trainer.fit(autoencoder, train_loader, valid_loader)
# 7. 从checkpoint恢复状态
# trainer.fit(autoencoder, train_loader, valid_loader, ckpt_path="/home/gvlib_ljh/class/Lightning_mnist/lightning_logs/version_25/checkpoints/epoch=9-step=160000.ckpt")# 8.开始测试
trainer.test(model=autoencoder, dataloaders=DataLoader(test_set))

参考:

https://zhuanlan.zhihu.com/p/659631467

这篇关于Pytorch-Lighting使用教程(MNIST为例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023290

相关文章

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE